• Title/Summary/Keyword: optimal linear extension.

Search Result 33, Processing Time 0.025 seconds

Bipartite posets with a unique optimal linear extension

  • Yoon, Young-Jin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.33 no.3
    • /
    • pp.393-395
    • /
    • 1996
  • Let P be a finite poset and let $\mid$P$\mid$ be the number of vertices in pp. A Subposet of P is a subset of P with the induced order. A chain C in P is a subposet of P which is a linear order. The length of the chain C is $\mid$C$\mid$ - 1. A poset is bipartite if the length of each maximal chain is one.

  • PDF

Analyzing Optimal Farming System Using Linear Programming - Case of Rice Farm in Seosan County, Chungnam - (선형계획법에 의한 복합영농의 최적화 방안 - 충남 서산시 A농가를 대상으로 -)

  • Kim, Chang Hwan;Kim, Sung Rok;Kim, So Yun
    • Journal of Agricultural Extension & Community Development
    • /
    • v.23 no.2
    • /
    • pp.123-133
    • /
    • 2016
  • According to increasing the number of rice farm households, it is important to find optimal farm scale, farm crops, and labour constraints depending on growth time. The study aims to analyze the optimal farming system using the linear programming in Seosan county, Chungnam. The survey was conducted in-depth interview to collect data from one farm household. Results show that farmers change their some crops in dry filed into ginger and hire farm labours in April. The findings should be of interest to rice farmers and policy makers to manage their farm effectively and to support them.

Design of Minimum Variance Fault Diagnosis Filter for Linear Discrete-Time Stochastic Systems with Unknown Inputs (미지입력이 존재하는 선형 이산 활률 시스템의 최소 분산 고장 진단 필터의 설계)

  • ;Zeungnam Bien
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.8
    • /
    • pp.39-46
    • /
    • 1994
  • In this paper a state reconstruction filter for linear discrete-time stochastic systems with unknown inputs and noises is presented. The suggested filter can estimate the system state vector and the unknown inputs simultaneously As an extension of the filter a fault diagnosis filter for linear discrete-time stochastic systems with unknown inputs and noises is presented for each filters the optimal gain determination methods which minimize the variance of the state reconstruction errorare presented. Finally the usability of the filtersis shown via numerical examples.

  • PDF

A Method for Solving Parametric Nonlinear Programming Problems with Linear Constraints (파라메트릭 선형계획문제의 해법: 선형제약 경우)

  • 양용준
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.7 no.1
    • /
    • pp.11-16
    • /
    • 1982
  • A method is described for the solution of a linearly constrained program with parametric nonlinear objective function. The algorithm proposed in this paper may be regarded as an extension of the simplex method for parametric linear programming. Namely, it specifies the basis at each stage such that feasibility ana optimality of the original problem are satisfied by the optimal solution of the reduced parametric problem involving only nonbasic variables. It is shown that under appropriate assumptions the algorithm is finite. Parametric procedures are also indicated for solving each reduced parametric problem by maintaining the Kuhn-Tucker conditions as the parameter value varies.

  • PDF

Large Robust Designs for Generalized Linear Model

  • Kim, Young-Il;Kahng, Myung-Wook
    • Journal of the Korean Data and Information Science Society
    • /
    • v.10 no.2
    • /
    • pp.289-298
    • /
    • 1999
  • We consider a minimax approach to make a design robust to many types or uncertainty arising in reality when dealing with non-normal linear models. We try to build a design to protect against the worst case, i.e. to improve the "efficiency" of the worst situation that can happen. In this paper, we especially deal with the generalized linear model. It is a known fact that the generalized linear model is a universal approach, an extension of the normal linear regression model to cover other distributions. Therefore, the optimal design for the generalized linear model has very similar properties as the normal linear model except that it has some special characteristics. Uncertainties regarding the unknown parameters, link function, and the model structure are discussed. We show that the suggested approach is proven to be highly efficient and useful in practice. In the meantime, a computer algorithm is discussed and a conclusion follows.

  • PDF

A TUTORIAL ON LINEAR QUADRATIC OPTIMAL GUIDANCE FOR MISSILE APPLICATIONS

  • TAHK, MIN-JEA
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.19 no.3
    • /
    • pp.217-234
    • /
    • 2015
  • In this tutorial the theoretical background of LQ optimal guidance is reviewed, starting from calculus of variations. LQ optimal control is then introduced and applied to missile guidance to obtain the basic form of LQ optimal guidance laws. Extension of LQ optimal guidance methodology for handling weighted cost function, dynamic lag associated with the missile dynamics and the autopilot, constrained impact angle, and constrained impact time is also described with a brief discussion on the asymptotic properties of the optimal guidance laws. Furthermore, an introduction to polynomial guidance and generalized impactangle-control guidance, which are closed related with LQ optimal guidance, is provided to demonstrate the current status of missile guidance techniques.

LOWER BOUNDS OF THE NUMBER OF JUMP OPTIMAL LINEAR EXTENSIONS : PRODUCTS OF SOME POSETS

  • Jung, Hyung-Chan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.32 no.2
    • /
    • pp.171-177
    • /
    • 1995
  • Let P be a finite poset and let $\mid$P$\mid$ be the number of vertices in pp. A subposet of P is a subset of P with the induced order. A chain C in P is a subposet of P which is a linear order. The length of the chain C is $\mid$C$\mid$ - 1. A linear extension of a poset P is a linear order $L = x_1, x_2, \ldots, x_n$ of the elements of P such that $x_i < x_j$ is P implies i < j. Let L(P) be the set of all linear extensions of pp. E. Szpilrajn [5] showed that L(P) is not empty.

  • PDF

A Study of BWE-Prediction-Based Split-Band Coding Scheme (BWE 예측기반 대역분할 부호화기에 대한 연구)

  • Song, Geun-Bae;Kim, Austin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.6
    • /
    • pp.309-318
    • /
    • 2008
  • In this paper, we discuss a method for efficiently coding the high-band signal in the split-band coding approach where an input signal is divided into two bands and then each band may be encoded separately. Generally, and especially through the research on the artificial bandwidth extension (BWE), it is well known that there is a correlation between the two bands to some degree. Therefore, some coding gain could be achieved by utilizing the correlation. In the BWE-prediction-based coding approach, using a simple linear BWE function may not yield optimal results because the correlation has a non-linear characteristic. In this paper, we investigate the new coding scheme more in details. A few representative BWE functions including linear and non-linear ones are investigated and compared to find a suitable one for the coding purpose. In addition, it is also discussed whether there are some additional gains in combining the BWE coder with the predictive vector quantizer which exploits the temporal correlation.

AN APPROXIMATE ALTERNATING LINEARIZATION DECOMPOSITION METHOD

  • Li, Dan;Pang, Li-Ping;Xia, Zun-Quan
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.5_6
    • /
    • pp.1249-1262
    • /
    • 2010
  • An approximate alternating linearization decomposition method, for minimizing the sum of two convex functions with some separable structures, is presented in this paper. It can be viewed as an extension of the method with exact solutions proposed by Kiwiel, Rosa and Ruszczynski(1999). In this paper we use inexact optimal solutions instead of the exact ones that are not easily computed to construct the linear models and get the inexact solutions of both subproblems, and also we prove that the inexact optimal solution tends to proximal point, i.e., the inexact optimal solution tends to optimal solution.

Combining Vehicle Routing with Forwarding : Extension of the Vehicle Routing Problem by Different Types of Sub-contraction

  • Kopfer, Herbert;Wang, Xin
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.35 no.1
    • /
    • pp.1-14
    • /
    • 2009
  • The efficiency of transportation requests fulfillment can be increased through extending the problem of vehicle routing and scheduling by the possibility of subcontracting a part of the requests to external carriers. This problem extension transforms the usual vehicle routing and scheduling problems to the more general integrated operational transportation problems. In this contribution, we analyze the motivation, the chances, the realization, and the challenges of the integrated operational planning and report on experiments for extending the plain Vehicle Routing Problem to a corresponding problem combining vehicle routing and request forwarding by means of different sub-contraction types. The extended problem is formalized as a mixed integer linear programming model and solved by a commercial mathematical programming solver. The computational results show tremendous costs savings even for small problem instances by allowing subcontracting. Additionally, the performed experiments for the operational transportation planning are used for an analysis of the decision on the optimal fleet size for own vehicles and regularly hired vehicles.