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AN APPROXIMATE ALTERNATING LINEARIZATION

DECOMPOSITION METHOD†

DAN LI, LI-PING PANG∗ AND ZUN-QUAN XIA

Abstract. An approximate alternating linearization decomposition method,
for minimizing the sum of two convex functions with some separable struc-
tures, is presented in this paper. It can be viewed as an extension of
the method with exact solutions proposed by Kiwiel, Rosa and Ruszczyn-
ski(1999). In this paper we use inexact optimal solutions instead of the
exact ones that are not easily computed to construct the linear models and
get the inexact solutions of both subproblems, and also we prove that the
inexact optimal solution tends to proximal point, i. e., the inexact optimal
solution tends to optimal solution.
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1. Introduction

The decomposition method is applied frequently for solving optimization
problems with some separable structures and also can be used to convert a
complicated and large scale problem to simpler and smaller subproblems.

The first decomposition scheme was proposed by Dantzig and Wolfe for solv-
ing primal block-angular structured linear problems, see [3]. A similar one is
Benders’ Decomposition which is applying Dantzig-Wolfe decomposition to the
dual problems for solving mixed integer programming problems, see [1]. Many
researchers are interested in the progress of the decomposition method and it is
developped rapidly, for example, there are the augmented Lagrangian decompo-
sition, see [15] for instance, operator splitting methods, see [11, 17, 18, 19, 4, 12]
for instance, and alternating direction methods, see [8, 2, 7, 5, 10] for instance.
Recently, decomposition methods plays an active role in stochastic programming
problems since stochastic programming problems have very large dimension and
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characteristic structures, see [16]. The augmented Lagrangian decomposition
method is equivalent to the proximal point method applied to the dual prob-
lem and is a useful tool for solving convex multistage stochastic programs. The
convergence mechanism of the operator splitting method is rather involved and
non-intuitive, however, it is difficult to monitor the progress of these methods.
The alternating direction methods has been proved to be an efficient tool for
solving convex multistages stochastic programming [10].

Many decomposition methods are explicitly or implicitly derived from the
proximal point algorithm which draws on a large volume of prior work by various
authors for maximal monotone operator, see [14]. The proximal point method
for convex program in exact form generates a sequence {zk}:

zk+1 = argmin
z

f(z) +
1

2
µk ‖ z − zk ‖2,

where µk > 0 for a convex and closed function f . In this algorithm exact
minimization at each iteration is weakened and the subdifferential ∂f is replaced
by an arbitrary maximal monotone operator T . However, this method is often
impractical since the exact iteration in many cases requires a computation which
is difficult as the same as solving the original problem 0 ∈ T (z), see [6].

In this paper we propose a decomposition method to minimize the sum of two
convex functions with the following form

min
x

F (x) = h(x) + f(x), (1)

where h : Rn → (−∞,+∞] and f : Rn → R are closed proper convex functions.
In alternating linearization method, see [10], each iteration involves solving

two subproblems of the following form:

h-subproblem min
x

h(x) + f̃k(x) +
1

2
µk ‖ x− xk ‖2

f -subproblem min
x

h̃k(x) + f(x) +
1

2
µk ‖ x− xk ‖2 .

where f̃k and h̃k are linearization of f and h respectively. However, the construc-

tion of f̃k and h̃k need the information of ∂f and ∂h, and generally it is difficult to
calculate the subdifferentials of f and h. Moreover, minimizing the subproblems
and compute the exact solutions are also difficult to be implemented in practice.

For these reasons one try to use the elements of approximate subdifferentials

to construct f̃k and h̃k and at the same time calculate the approximate solution
of both subproblems instead of exact ones in the algorithms. The reason of
employing approximate subgradients at a given point is that when a subgradient
gf (x) ∈ ∂f(x) is expensive to compute then one may take an already computed

subgradient gf (x) of f at some x̃ near x, thus gf (x̃) ∈ ∂ε
f
f(x) with

0 ≤ εf = f(x)− f(x̃)− 〈gf (x̃), x− x̃〉.
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In this paper, we use εk-subgradients and inexact solutions to construct f̃k and

h̃k in order to make the alternating linearization decomposition algorithm more
implementable and more applicable.

The paper is organized as follows. In Section 2, we outline briefly the ap-
proximate alternating linearization decomposition method and how the method
convert to two subproblems. In Section 3, we show the implementable algorithm
by approximate proximal decomposition via alternating linearization. According
to the properties of strongly convexity we complete the convergence analysis of
this algorithm in Section 4.

2. Approximate Alternating Linearization Decomposition Algorithm.

It is impossible in general to evaluate exactly the proximal point of objective
function F

p(x̄) = argmin
x

h(x) + f(x) + w(x)

where w(x) = 1
2µ ‖ x− x̄ ‖2, µ > 0 is fixed and x̄ ∈ Rn is the proximal center.

For implementation we shall make use of ε-approximate subdifferentials to
compute the approximation of the proximal point. Specially, suppose that, for
each x̄ ∈ Rn and for each εk > 0, we can find approximate proximal points
ph(x̄, εk), pf (x̄, εk) ∈ Rn to the unique minimizer p(x̄) such that ph(x̄, εk) = zkh
and pf (x̄, εk) = zkf are the εk-approximate solutions of h-subproblem and f -
subproblem respectively. We denote the εk-approximate solutions of the two

subproblems by εk- argmin
x

h(x) + f̃k(x) + w(x) and εk- argmin
x

h̃k(x) + f(x) +

w(x). The following notations will be used in the rest of this section.

Notations

k Iteration counter

µ Prox center

w(·) w(x) = 1
2µ ‖ x− x̄ ‖2

h-subproblem min
x

h(x) + f̃k(x) + w(x), where f̃k is a linear model of f

f -subproblem min
x

h̃k(x) + f(x) + w(x), where h̃k is a linear model of h

zkh An εk-approximate solution of h-subproblem

zkf An εk-approximate solution of f -subproblem

f̃k f̃k(·) = f(zk−1
f ) + 〈gk−1

f , · − zk−1
f 〉,

where g0f ∈ ∂ε0f(z
0
f ), z

0
f ∈ Rn and gk−1

f = −gk−1
h − µ(zk−1

f − x̄)

h̃k h̃k(·) = h(zk−1
h ) + 〈gkh, · − zkh〉, where gkh = −gk−1

f − µ(zkh − x̄)

Next, we present the structure of approximate alternating linearization de-
composition algorithm.
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Algorithm I: approximate alternating linearization decomposition
algorithm.

Step 0: Initiation

Let z0f ∈ Rn, g0f ∈ ∂ε0f(z
0
f ), ε0 ∈ (0, 1) and set k = 1.

Step 1: Solving the h-subproblem

Compute zkh = ph(x̄, εk) and gkh = −gk−1
f − µ(zkh − x̄).

Step 2: Solving the f-subproblem

Compute zkf = pf (x̄, εk) and gkf = −gkh − µ(zkf − x̄).
Step 3: Update εk and k

Let εk = γεk−1, γ ∈ (0, 1). 2 Set k = k + 1 and loop at Step 1.

End of the algorithm
Obviously the difference between the algorithm given above and the one given

in [10] is that we use inexact solutions in iteration but not exact ones here. In
this section the main work is to prove that ph(x̄, εk) → p(x̄) as k → ∞.
Remarks

(i) When εk = 0, the Algorithm I is just the alternating linearization algorithm
given in [10].

(ii) Suppose f is convex and gf ∈ ∂εf(x). Then one has

f(z) ≥ f(x) + 〈gf , z − x〉 − ε,

and x∗, an ε−approximate solution of f , is an optimal solution if and only if
0 ∈ ∂εf(x

∗) in other words for any x we have f(x) ≥ f(x∗)+ 〈0, x−x∗〉− ε, i. e.
f(x) ≥ f(x∗)− ε, ∀x. It can be written by x∗ ∈ ε- argmin f(x).

(iii) The necessary and sufficient condition of optimality for the approximate
solutions of h-subproblem has the form

0 ∈ ∂εkh(z
k
h) + gk−1

f + µ(zkh − x̄)

and gkh = −gk−1
f − µ(zkh − x̄) ∈ ∂ε

k
h(zkh), so the vector gkh is one element of

∂ε
k
h(zkh). Hence h̃k ≤ h+ εk by the εk-subgradient inequality.

Similarly, the vector gkf = −gkh − µ(zkf − x̄) is the element of ∂ε
k
f(x) that

satisfies the optimality condition for the approximate solutions of f -subproblem:

0 ∈ gkh + ∂ε
k
f(zkf ) + µ(zkf − x̄).

Therefore, f̃k+1 ≤ f + εk.

(iv) For convenient we denote F̃k := h+ f̃k, F̆k = h̃k + f , and F k = h̃k + f̃k.
By the construction of linear model and approximate subgradient inequality we
have

F̃k ≤ F + εk, F̆k ≤ F + εk, F k ≤ F + 2εk.

Hence, F̃k, F̆k, and F k are lower approximation of the objective function F =
h+ f as k → ∞ and lim

k→∞
εk = 0.
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Let ξk and ξk+1/2 denote

ξk = h(zkh) + f̃k(z
k
h) + w(zkh), ξk+1/2 = h̃k(z

k
f ) + f(zkf ) + w(zkf ),

where zkh and zkf are the εk-approximate solutions of h-subproblem and f -
subproblem respectively.

The sequences {ξk} and {ξk+1/2}, which are generated by this approximate
alternating linearization decomposition algorithm are different from the sequence
{ηk} that is monotone, see [10]. Obviously, the sequences can’t be nondecreasing.

Lemma 1. The sequences {ξk} and {ξk+1/2} have the property that

ξk ≤ ξk+1/2 + εk ≤ ξk+1 + 2εk

Proof. Since zkh ∈ εk- argminh(x) + f̃k(x) + w(x), the optimality condition of
εk-approximate solutions

0 ∈ ∂ε
k
h(zkh) + gk−1

f + µ(zkh − x̄)

holds. Then it follows that there exists gkh ∈ ∂ε
k
h(zkh) such that 0 = gkh + gk−1

f +

µ(zkh − x̄). By construction of h̃k we have ∇h̃k(z
k
h) = gkh and h(zkh) = h̃k(z

k
h).

Hence

0 = ∇h̃k(z
k
h) +∇f̃k(z

k
h) + µ(zkh − x̄),

and so we have zkh = argmin
x

h̃k(x) + f̃k(x) + w(x) and

ξk ≤ h̃k(x) + f̃k(x) + w(x) ≤ h̃k(x) + f(x) + w(x) + εk.

It leads to

ξk ≤ h̃k(z
k
f ) + f(zkf ) + w(zkf ) + εk,

i. e. , ξk ≤ ξk+1/2 + εk.

Similarly, zkf ∈ εk- argmin h̃k + f(x) + w(x) because there exists

gkf = ∇f̃k+1(z
k
f ) ∈ ∂ε

k
f(zkf ) such that 0 = ∇h̃k(z

k
f ) + ∇f̃k+1(z

k
f ) + µ(zkf − x̄),

one has

ξk+1/2 = h̃k(z
k
f ) + f̃k+1(z

k
f ) + w(zkf ) ≤ h(x) + f̃k+1(x) + w(x) + εk.

Therefore, ξk+1/2 ≤ h(zk+1
h ) + f̃k+1(z

k+1
h ) + w(zk+1

h ) + εk = ξk+1 + εk. ¤

For estimating ξk+1/2− ξk following the structure of the family of relaxations
of f -subproblem at iteration k given in [10] we construct Gk(x, λ) as follows,

min
x

Gk(x, λ) = h̃k(x) + (1− λ)f̃k(x) + λf̂k(x) + w(x), (2)

where λ ∈ [0, 1] and f̂k(x) = f(zkh) + 〈gf (zkh), x − zkh〉 for gf (z
k
h) ∈ ∂ε

k
f(zkh).

According to the εk-subgradient inequality, one has f̂ ≤ f + εk. Since f̃k and

f̂k are lower approximations of f as k → ∞, (2) is a relaxation of f -subproblem
for all λ ∈ [0, 1].
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Denoting the optimal value of (2) by Ĝk(λ), we have

max
λ∈[0,1]

Ĝk(λ)− Ĝk(0) ≤ ξk+1/2 − ξk + εk.

In fact,

Gk(x, λ) ≤ h̃k(x) + (1− λ)[f(x) + εk] + λ[f(x) + εk] + w(x)

= h̃k(x) + f(x) + w(x) + εk.

Thus, by virtue of the relations given above we have

max
λ∈[0,1]

Ĝk(λ) ≤ ξk+1/2 + εk, (3)

and Ĝk(0) = ξk since h̃k(z
k
h) = h(zkh). We minus the equal value of the two

hands of the above equality (3) to complete the result.
For the continuity and differentiability of Gk(x, λ), we have the following

equation by directly calculating partial derivation for x, i. e.

0 =
∂

∂x
Gk(x̂(λ), λ) = gkh + (1− λ)gk−1

f + λgf (z
k
h) + µ[x̂(λ)− x̄].

x̂(λ) = x̄− 1

µ
{gkh + gk−1

f + λ[gf (z
k
h)− gk−1

f ]}, (4)

x̂(0) = x̄− 1
µ (g

k
h+gk−1

f ) and zkh = argmin
x

Gk(x(0)) = x̂(0), since the construction

of Gk(x, λ). Therefore x̂(λ)− x̂(0) = −λ
µ [gf (z

k
h)− gk−1

f ].

Computing the derivative of Ĝk(λ) one has:

Ĝ′
k(λ) = f̂k(x̂(λ))− f̃k(x̂(λ))

= f(zkh) + 〈gf (zkh), x̂(λ)− zkh〉 − [f(zk−1
f )− 〈gk−1

f , x̂(λ)− zk−1
f 〉]

= 〈gf (zkh)− gk−1
f , x̂(λ)〉+ f(zkh)− 〈gf (zkh), zkh〉 − [f(zk−1

f )− 〈gk−1
f , zk−1

f 〉]
= 〈gf (zkh)− gk−1

f , x̂(λ)− x̂(0)〉+ f(zkh)− [f(zk−1
f ) + 〈gk−1

f , zkh − zk−1
f 〉]

= −λ

µ
‖ gf (z

k
h)− gk−1

f ‖2 +F (zkh)− F̃ (zkh).

Lemma 2. The following inequalities hold for any gf (z
k
h) ∈ ∂ε

k
f(zkh),

gk−1
f ∈ ∂ε

k
f(zk−1

f ), and δk = F (zkh)− F̃ (zkh):

(a) max
λ∈[0,1]

Q̂k(λ)− Q̂k(0) ≥ Q̂k(λ̄k)− Q̂k(0) ≥
1

2
λ̄kδk;

(b) ξk+1 + εk ≥ ξk+1/2 ≥ ξk + 1
2 λ̄kδk − εk,

where λ̄k = max{0,min{1, ‖gf (zkh)− gk−1
f ‖−2δkµ}.
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Proof. According to Newton-Leibniz formula and the bound of λk, one has

Ĝk(λ̄k)− Ĝk(0) =

∫ λ̄k

0

Ĝ′
k(λ)dλ

= λ̄k[δk − λ̄k

2µ
‖ gf (z

k
h)− gk−1

f ‖2]

≥ λ̄k[δk − 1

2µ
· µδk
‖ gf (z

k
h)− gk−1

f ‖ · ‖ gf (z
k
h)− gk−1

f ‖2]

=
1

2
λ̄kδk.

The item (b) follows from (a) and Lemma 1. ¤
The following results are similar to the ones given in Section 2 of [10] and the
argument is also similar in form but essentially different.

Theorem 1. The approximate proximal points ph(x̄, εk)} and approximations

{F̃k} generated by Algorithm I have the following properties when lim
k→∞

εk = 0:

(a) ‖ ph(x̄, εk)− p(x̄) + 2εk ‖≤ { 1
µ [F (ph(x̄, εk))− F̃k(ph(x̄, εk))]}1/2;

(b) lim
k→∞

[F (ph(x̄, εk))− F̃k(ph(x̄, εk))] = 0;

(c) lim
k→∞

ph(x̄, εk) = p(x̄).

Proof. According to F ≥ F̃k − εk and the definition of ph(x̄, εk) that is the
εk-approximate solution of the strongly convex h-subproblem, we have [14]

F (p(x̄)) + w(p(x̄)) ≥ F̃k(p(x̄)) + w(p(x̄))− εk

≥ F̃k(ph(x̄, εk) + w(ph(x̄, εk))

+ 〈0, p(x̄)− ph(x̄, εk)〉+
1

2
µ ‖ p(x̄)− ph(x̄, εk) ‖2 −2εk,

i. e. ,

F (p(x̄)) + w(p(x̄))

≥ F̃k(ph(x̄, εk)) + w(ph(x̄, εk)) +
1

2
µ ‖ p(x̄)− ph(x̄, εk) ‖2 −2εk.

(5)

Similarly, p(x̄) solves the strongly convex f -subproblem, so

F (ph(x̄, εk)) + w(ph(x̄, εk))

≥ F (p(x̄)) + w(p(x̄)) +
1

2
µ ‖ p(x̄)− ph(x̄, εk) ‖2

(6)

Summing the two equalities (5) and (6) above, one obtains

F (ph(x̄, εk))− F̃k(ph(x̄, εk)) ≥ µ ‖ p(x̄)− ph(x̄, εk) ‖2 −2εk,

that leads to (a). Next, (5) can be equivalently written as

1

2
µ ‖ p(x̄)− ph(x̄, εk) ‖2≤ F (p(x̄)) + w(p(x̄))− ξk + 2εk. (7)
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By Lemma 2, ξk is nondecreasing as εk → 0, so (7) implies that ph(x̄, εk) is
bounded. Then applying the Theorem 24.7 in [13] to {gf (zkh)} one obtains its
boundedness. Similarly, according to the property of strongly convexity

F (p(x̄)) + w(p(x̄)) ≥ F̆ (p(x̄)) + w(p(x̄))− εk

≥ F̆ (pf (x̄, εk)) + w(pf (x̄, εk)) +
1

2
µ ‖ p(x̄)− pf (x̄, εk) ‖2 −2εk,

one has
1

2
µ ‖ p(x̄)− pf (x̄, εk) ‖2≤ F (p(x̄)) + w(p(x̄))− ξk+1/2 + 2εk,

Therefore zkf and gk−1
f ∈ ∂ε

k
f(zk−1

f ) are bounded. By (7), as k → ∞ the

sequence ξk is bounded from above, so Lemma 2 implies that it converges and

lim
k→∞

λ̄kδk → 0. Since ‖ gf (z
k
h)−gk−1

f ‖ is bounded, (b) follows from the definition

of λ̄k by Lemma 2. The final assertion is a consequence of (a) and (b). ¤
Theorem 1 ensures that for every ε > 0 and after finite many steps an approxi-

mate proximal point ph(x̄, εk) satisfying ‖ ph(x̄, εk)−p(x̄) ‖≤ ε. An implemental
scheme will be presented in the next section.

3. The Implemental Approximate Alternating Linearization
Decomposition Method.

The approximate alternating linearization method can be implemented under
a simple descent test for terminating the loop of Algorithm I in order to update
the prox center.

In this section the notations are modified as follows.

Notations

xk Current iteration point

µk Prox center

wk(·) wk(x) =
1
2µk ‖ x− xk ‖2

h-subproblem minx h(x) + f̃k(x) + wk(x), where f̃k is a linear model of f

f -subproblem minx h̃k(x) + f(x) + wk+1(x), where h̃k is a linear model of h

zkh An εk-approximate solution of h-subproblem

zkf An εk-approximate solution of f -subproblem

f̃k f̃k(·) = f(zk−1
f ) + 〈gk−1

f , · − zk−1
f 〉,

where g0f ∈ ∂ε0f(z
0
f ), z

0
f ∈ Rn and gkf = −gkh − µk+1(z

k
f − xk+1)

h̃k h̃k(·) = h(zk−1
h ) + 〈gkh, · − zkh〉, where gkh = −gk−1

f − σ(zkh − xk)

Next the implemental approximate alternating linearization decomposition
algorithm is displayed.
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Algorithm II: implemental approximate alternating linearization de-
composition algorithm.

Step 0: Initiation

Let x1 ∈ domh, z0f ∈ Rn, g0f ∈ ∂ε0f(z
0
f ), ε0 ∈ (0, 1) and choose

parameters µ1 ≥ µmin > 0, κ > 1, β0 > 0, β1 ∈ (0, 1). Set k = 1.
Step 1: Solving the h-subproblem

Compute zkh = ph(x̄, εk) and gkh = −gk−1
f − µk(z

k
h − xk).

Step 2: Stopping test

Let F̃k = h+f̃k. Set vk = F (xk)−F̃k(z
k
h). If F (zkh) ≤ F (xk)−β1vk,

then set xk+1 = zkh (descent step);
otherwise set xk+1 = xk (null step).

Step 3: Update prox center

If xk+1 = zkh, then choose µk+1 ∈ [max{µmin, µk/κ}, µk].

If xk+1 = xk and

δk := F (zkh)− F̃k(z
k
h) ≥ β0

vk
‖zkh − xk‖ ;

then choose µk+1 ≥ µk; else set µk+1 = µk.
Step 4: Solving the f-subproblem

Find the εk-approximate solution zkf of the following f -problem.

Set gkf = −gkh − µk+1(z
k
f − xk+1).

Step 5: Update εk and k.

Let εk = γεk−1, γ ∈ (0, 1) and set k = k + 1 and loop at Step 1.

End of the Algorithm II
In Algorithm II, we denote

ξkµ
k
= h(zkh) + f̃k(z

k
h) + wk(z

k
h) = F̃k(z

k
h) + wk(z

k
h), (8)

ξk+1/2
µ
k+1

= h̃k(z
k
f ) + f(zkf ) + wk+1(z

k
f ) = F̂k(z

k
f ) + wk+1(z

k
f ) (9)

respectively. Let us first make a simple observation concerning the εk-optimal
values of h-subproblem and f -subproblem.

Since h̃k(z
k
h) = h(zkh) and

ξkµ
k
= h̃k(z

k
h) + f̃k(z

k
h) + wk(z

k
h)

≤ h̃k(x) + f̃k(x) + wk(x) ≤ h̃k(x) + f(x) + wk(x) + εk,

one has

ξkµ
k
≤ h̃k(z

k
f ) + f(zkf ) + wk(z

k
f ) + εk ≤ ξk+1/2

µ
k+1

+ wk(z
k
f )− wk+1(z

k
f ) + εk.

Similarly, we gain another result and hence the inequality ξ
k+1/2
µ
k+1

≤ ξk+1
µ
k+1

+ εk
holds.
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In short, the relations of ξkµ
k
, ξ

k+1/2
µ
k+1

and ξk+1
µ
k+1

are given below:

ξk+1
µ
k+1

+ εk ≥ ξk+1/2
µ
k+1

≥ ξkµ
k
− wk(z

k
f ) + wk+1(z

k
f )− εk.

According to gkf ∈ ∂ε
k
f(zkf ) and F̃k ≤ F + εk we get ξkµ

k
≤ F (xk) + εk and

vk ≥ −εk. Thus it follows from Step 2

F (zkh) ≤ F (xk)− β1vk ≤ F (xk)− β1εk ≤ F (xk)

and hence {F (xk)} is nonincreasing and {xk} ⊂ domF . These inequalities show
that if vk = 0 or ξkµ

k
= F (xk), then xk tends to a cluster of argminF .

4. Convergence analysis

First of all, in this section we make use of some results related to the sequences

{ξkµ
k
} and {ξk+1/2

µ
k+1

} generated by Algorithm II to investigate the stopping test.

Secondly we consider the value of them in both null steps and descent steps so

as to conclude that iterative point xk → x̃, where x̃ ∈ Argmin
x

F .

Lemma 3. The following inequalities are true for all k = 1, 2, . . . and εk → 0

as k → ∞ :
(a) wk(z

k
h)− 2εk ≤ 1

2vk − εk ≤ F (xk)− ξkµ
k
≤ vk;

(b) wk+1(z
k
f )− 2εk ≤ F (xk+1)− ξ

k+1/2
µ
k+1

.

Proof. The right inequality of (a) comes from definitions of vk and {ξkµ
k
} which

imply F (xk) − vk = F̃k(z
k
h) ≤ ξkµ

k
. On the other hand by the εk-subgradient

inequality and

−µk(z
k
h − xk) = gkh + gk−1

f ∈ ∂ε
k
F̃k(z

k
h),

it follows from

F̃k(x
k) ≥ F̃k(z

k
h) + 〈gkh + gk−1

f , xk − zkh〉 − εk = F̃k(z
k
h) + µk ‖ zkh − xk ‖2 −εk.

Then one has

vk = F (xk)− F̃k(z
k
h) ≥ F̃k(x

k)− F̃k(z
k
h)− εk ≥ 2wk(z

k
h)− 2εk.

In consequence vk can be used to express ξkµ
k
as follows

ξkµ
k
= F (xk)− vk + wk(z

k
h)

≤ F (xk)− vk +
1

2
(vk + 2εk) = F (xk)− 1

2
vk + εk.

(10)

The assertion (a) is proved. Similarly, the following inequalities are true

F (xk+1)− F̂k(z
k
f ) ≥ F̂k(x

k+1)− F̂k(z
k
f )− εk ≥ 2wk+1(z

k
f )− 2εk,

since −µk+1(z
k
f − xk+1) = gkf + gkh ∈ ∂ε

k
F̂k(z

k
f ). Therefore the inequality of (b)

F (xk+1)− ξk+1/2
µ
k+1

≥ wk+1(z
k
f )− 2εk.
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is correct. ¤

Corollary 1. If vk = 0, then xk → x̃, where x̃ ∈ ArgminF .

Proof. It is clear that zkh = xk and F̃k(z
k
h) = F (zkh) = F (xk) from Lemma 3 (a).

Moreover xk = zkh → argmin{F + wk(·)} as k → ∞ since limk→∞ εk = 0. Thus
we have xk → x̃, where x̃ ∈ ArgminF [14]. ¤

To establish the convergence of the Algorithm II, it is necessary to consider
the εk-optimal values of h-subproblem and f -subproblem in both null steps and
descent steps.

Lemma 4. In a null step at iteration k, we estimate the increase from ξkµ
k
to

ξk+1
µ
k+1

as follows:

ξk+1
µ
k+1

≥ ξkµ
k
+

1

2
(1− β1)λ̄kvk − 2εk,

where λ̄k ≥ max{min{1, (1 − β1)vkµk/‖gf (zkh) − gk−1
f ‖2}} for any gf (z

k
h) ∈

∂ε
k
f(zkh).

Proof. If a null step is occurring at iteration k, we have F (zkh) > F (xk)− β1vk,
hence

δk = F (zkh)− F̃k(z
k
h) = F (zkh)− F (xk) + vk > (1− β1)vk.

If µk+1 = µk, then from Lemma 2 (b), it follows that

ξk+1
µ
k+1

≥ ξkµ
k
+

1

2
(1− β1)λ̄kvk − 2εk.

In consequence in a null step µk+1 > µk, ξ
k+1
µ
k+1

≥ ξk+1
µ
k

holds. Then proof is

completed. ¤

Lemma 5. Assume the set K = {xk+1 6= xk} which contains the descent points
generated by Algorithm II and εk = 0 as k → ∞.

(i) If K is finite, then vk → 0.
(ii) If K is infinite and inf F > −∞, then

(a)
∑

k∈K

vk < ∞; (b) lim
k→∞

vk = 0;

(c) lim
k→∞

[F (xk)− ξkµ
k
] = 0; (d) lim

k→∞
[F (xk+1)− ξk+1/2

µ
k+1

= 0.

Proof. (i) Suppose k0 ∈ {k|xk = xk0 , k ≥ k0}. By virtue of (8) and Lemma 4,
one has ξkµ

k
≤ F (xk0)+ εk0

for k ≥ k0, and hence the sequence ξkµ
k
is convergent

and ξk+1
µ
k+1

− ξkµ
k
→ 0. Since µk ≥ µmin > 0 for all k and {xk} is bounded, so are

zkh and zkf from Lemma 3. Therefore gf (z
k
h) ∈ ∂ε

k
f(zkh) and gkf ∈ ∂ε

k
f(zkf ) are

bounded as well, since f is a proper convex function coming from Theorem 23.4
[13]. Hence according to (4) one has λ̄kvk → 0 and vk → 0 as k → ∞.
(ii) The items (a)-(d) can be easily proved from [10]. The only different proofs
from [10] are only in which εk-optimal solutions are used here. Note that, εk → 0
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as k → ∞. Hence there is rarely difference except the constant εk.
We prove the rest of this assertion. For a selected k ∈ K, we have

‖ xk+1 − x̃ ‖2= ‖ (xk+1 − xk) + (xk − x̃ ‖2

= ‖ xk+1 − xk ‖2 +2〈xk+1 − xk, xk+1 − x̃− (xk+1 − xk)〉+ ‖ xk − x̃ ‖2

= ‖ xk − x̃ ‖2 +2〈xk+1 − xk, xk+1 − x̃〉− ‖ xk+1 − xk ‖2 .

Since, gk
F̃
= gkh + gk−1

f = −µk(xk+1 − xk) ∈ ∂ε
k
F̃k(x

k+1), we have

µk〈xk+1 − xk, xk+1 − x̃〉 = 〈x̃− xk+1, gk
F̃
〉

≤ F̃k(x̃)− F̃k(x
k+1) + εk

≤ F (x̃)− F (xk) + vk + 2εk.

according to Step 2 of Algorithm II. It leads to

‖ xk+1 − x̃ ‖2= ‖ xk − x̃ ‖2 +2〈xk+1 − xk, xk+1 − x̃〉− ‖ xk+1 − xk ‖2
≤ ‖ xk − x̃ ‖2 +2〈xk+1 − xk, xk+1 − x̃〉

≤ ‖ xk − x̃ ‖2 +
2

µk

(F (x̃)− F (xk) + vk + 2εk)

≤ ‖ xk − x̃ ‖2 +
2

µk

(vk + 2εk) ≤‖ xk − x̃ ‖2 +
2

µk

vk +
4

µk

εk.

It is easy to see that the accumulation set of {xk} is bounded from the last
inequality above and Lemma 5 because {µk} is bounded away from zero by
construction. Hence, {xk} is not empty, say, x̄ is a cluster one of this set. This
lead to the conclusion that x̄ is the unique accumulation point of {xk}. ¤

Lemma 6. If there exists a point x̃ such that F (xk) ≥ F (x̃) for all k, then

(1) vk → 0, F (xk)− ξkµ
k
→ 0, and F (xk)− ξ

k+1/2
µ
k+1

→ 0, as k → ∞;

(2) the sequence {xk} converges to a point x̄ ∈ argminF , and F (xk) ↓ F (x̄).

Proof. Similarly, these results can be testified by [10] Lemma 4.7 because
lim
k→∞

εk = 0 ¤

Our results can be summarized as the following theorem.

Theorem 2. Algorithm II generates a sequence {xk} with the following proper-
ties:
(1) F (xk) ↓ inf F ;
(2) If ArgminF 6= ∅, then {xk} converges to a point x̂ ∈ ArgminF ;
(3) If ArgminF = ∅, then ‖ xk ‖→ ∞;
(4) If ArgminF 6= ∅ and the sequence {µk} is bounded, then the sequences {gkf}
and {gkh} are bounded, gkh + gk−1

f → 0, gkh + gkf → 0, and every accumulation

point (ĝf , ĝh) of {(gkf , gkh)} satisfies the relations ĝf ∈ ∂εf(x̂), ĝh ∈ ∂εh(x̂), and
ĝf + ĝh = 0.
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Proof. These results resemble Theorem 4.8 in [10] and are easily proved similar
to it. ¤
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