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ABSTRACT. In this tutorial the theoretical background of LQ optimal guidance is reviewed,

starting from calculus of variations. LQ optimal control is then introduced and applied to

missile guidance to obtain the basic form of LQ optimal guidance laws. Extension of LQ

optimal guidance methodology for handling weighted cost function, dynamic lag associated

with the missile dynamics and the autopilot, constrained impact angle, and constrained im-

pact time is also described with a brief discussion on the asymptotic properties of the optimal

guidance laws. Furthermore, an introduction to polynomial guidance and generalized impact-

angle-control guidance, which are closed related with LQ optimal guidance, is provided to

demonstrate the current status of missile guidance techniques.

1. INTRODUCTION

The purpose of this tutorial is to provide fundamentals of guidance laws based on linear

quadratic (LQ) optimal control theory that have been developed for missile applications since

the 1960s. The scope of the tutorial is restricted to the works done by the author and his

ex-students, and other previous works on guidance laws are not considered unless necessary.

Technical details of the topics discussed here can be found in the accompanying papers pub-

lished in this special issue of the journal.

Loosely speaking, guidance laws are algorithms calculating the control commands that the

vehicle follows to achieve the mission objectives. In missile applications, the set of the ob-

jectives depends on the purpose of the missile system although the fundamental objective is

to hit the target with zero miss distance. For example, an air-to-air missile may be designed

to just hit a highly-maneuvering agile aircraft while an anti-tank missile needs to hit a slowly

moving tank with a certain range of impact angles. Furthermore, the means to acquire the tar-

get information and to produce forces and moments required for vehicle control can limit the

range of applicable guidance algorithms. With an infrared seeker, the missile cannot measure

the target range (the distance from the missile to the target) so that some LQ optimal guidance

laws cannot be applied unless the target range is estimated by using a tracking filter. Due to

the diversity of missile seekers, actuators, operational environments, target types, and mission

objectives, various guidance algorithms have been studied to accommodate the specific needs
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of each missile system. To prevent the readers from being distracted, the discussion of this tu-

torial is focused on the terminal homing phase, for which feedback guidance laws based on LQ

optimal control theory have been successfully applied. Mid-course guidance required when the

target is beyond the operational range of the on-board seeker will not be much discussed here

since it needs different mathematical approaches such as trajectory optimization for which LQ

optimal guidance is not useful.

This tutorial starts with a brief introduction of optimal control theory and LQ optimal con-

trol given in Section 2. LQ optimal guidance, which is a direct application of LQ optimal

control to missile guidance is also described. Section 3 treats various topics associated with

practical applications, showing how LQ optimal guidance can meet specific needs and provide

practical solutions. Guidance laws associated with weighted cost function, dynamic lag, im-

pact angle control, and impact time control are discussed one by one. Asymptotic properties

of the guidance gain are also explained to demonstrate the importance of accurate time-to-go

estimation for integrated guidance. Section 4 is about polynomial guidance and generalized

impact-angle-control guidance, which are closely related with LQ optimal guidance. The mo-

tivation of polynomial guidance and the analysis results on generalized impact-angle-control

guidance are briefly discussed. Section 5 provides concluding remarks.

2. OPTIMAL HOMING GUIDANCE

In this section, the fundamentals of LQ optimal guidance are provided for the readers who

are not familiar with optimal control theory. LQ optimal guidance is a direct application of

LQ optimal control which has a solution in the feedback form. Although the calculation of

the feedback gains needs numerical integration for general cases, analytic solutions have been

obtained for many cases of practical importance.

2.1. Optimal Control Theory. In general, optimal guidance laws are referred to as guidance

laws derived from optimal control theory, which is founded on calculus of variations. Johann

Bernoulli is known to be the first mathematician to consider the brachistochrone curve problem,

a simple problem of calculus of variations, but Euler and Lagrange contributed extensively to

lay the foundations of calculus of variations. The necessary condition for optimality, known as

the Euler-Lagrange equation, is expressed as

∂L

∂x
− d

dt

(
∂L

∂ẋ

)
= 0 (2.1)

where L(t, x, ẋ) is the functional to be optimized.

Given a dynamic constraint on x , for example, we have an optimal control problem formu-

lated as follows:

Minimize J = φ(xf ) +

∫ tf

t0

L(x, u, t)dt (2.2)

subject to ẋ = f(t, x, u), x(t0) = x0 (dynamic constraints) (2.3)
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ψ(xf ) = 0 (terminal constraints) (2.4)

Let the dimensions of the state, control, and constraint vectors be n,m, p, respectively; that

is,

x : n× 1, u : m× 1, ψ : p× 1

And define augmented functions H and G as

H � L+ λT f, G � φ+ μTψ (2.5)

where λ and μ are multipliers for the dynamics and the constraints, respectively. Then the

Euler-Lagrange equation for the optimal control problem becomes

(i) ẋ = Hλ, x(t0) = x0 (n D.E’s with B.C’s) (2.6)

(ii) λ̇ = −Hx, λ(tf ) = Gxf
(n D.E’s with B.C’s) (2.7)

(iii) 0 = Hu (m algebaric equations) (2.8)

(iv) ψ(xf ) = 0 (p algebraic equations) (2.9)

The optimal solution (x∗(t), λ(t), u∗(t), μ) is obtained by solving these four equations,

which is a two-point boundary value problem (TPBVP). Derivation of the Euler-Lagrange

equation for optimal control can be found in [1]. Note that the Euler-Lagrange equation is

valid only for a weak minimum. Weierstrass was the first to provide the necessary condition

for a strong minimum, which is a special case of Pontryagin’s maximum(minimum) principle.

2.2. Linear Quadratic Optimal Control. Two-point boundary value problems associated

with optimal control problems do not allow analytical solutions for most cases. However,

if the system f(t, x, u) is linear and L(t, x, u) is a quadratic function of x and u , then the

Euler-Lagrange equation reduces to a final value problem. This problem is called LQ optimal

control and its solution can be obtained by integrating three differential equations backwards

from the final time.

Consider an LQ optimal control problem with terminal constraints shown below:

Minimize J =
1

2

∫ tf

t0

(xTAx+ uTBu)dt (quadratic cost) (2.10)

subject to ẋ = Fx+Gu, x(t0) = x0 (linear dynamics) (2.11)

ψ ≡ Dxf − c = 0 (linear terminal constraints) (2.12)

Then the optimal control is derived as [1]

u∗ = −B−1GT (S −RQ−1RT )x−B−1GTRQ−1c (2.13)
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where matrices S(t), R(t), Q(t) satisfy the following differential equation, respectively;

Ṡ = −A− F TS − SF + SGB−1GTS, S(tf ) = 0 (2.14)

Ṙ = −(F −GB−1GTS)TR, R(tf ) = DT (2.15)

Q̇ = RGB−1GTR, Q(tf ) = 0 (2.16)

Since the solution of feedback form is available, the LQ controllers described above can find

many practical applications subject to terminal constraints.

2.3. LQ Optimal Homing Guidance for Intercept. The purpose of homing guidance in mis-

sile applications is to intercept (or hit) the target as accurately as possible. This requirement can

be formulated as a linear terminal constraint shown in (2.12). Furthermore, the missile-target

dynamics can be simplified as a linear system if the missile and the target maintain their speed

constant. Finally, we can choose A = 0 in (2.10) by assuming that the state variables during

the flight is not important. Then, (2.14) reduces to S(t) ≡ 0 and the optimal control u∗(t) is

simplified as

u∗ = B−1GTRQ−1RTx−B−1GTRQ−1c (2.17)

where R(t) satisfies

Ṙ = F TR, R(tf ) = DT (2.18)

and Q(t) is obtained from (2.16).

Now we consider a simple two-dimensional guidance geometry shown in Fig. 1 to derive

the optimal guidance law as described in [1, 2]. In this figure, the Z-axis is chosen to be

aligned with the direction of the target velocity. It is assumed that the closing velocity, the X-

component of the missile velocity, is constant and the line-of-sight (LOS) angle σ is small. Let

z and v denote the relative position and velocity of the target with respect to the missile along

the Z -axis. Then, the state variable associated with the homing kinematics can be defined as

x =
[
z ν

]T
(2.19)

and the equation of motion is obtained as

ẋ =

[
0 1
0 0

]
x+

[
0

at − am

]
(2.20)

where at and am denote the Z-axis acceleration of the target and missile, respectively. Note

that at = 0 for a non-maneuvering target.

Let u � aM and at = 0 , then the optimal guidance problem is formulated as follows:

Minimize J =
1

2

∫ tf

t0

u2dt (2.21)

subject to (2.20) and ψ ≡ zf = [1 0]xf = 0 (2.22)

The rationale for the cost function (2.21) is that excessive missile lateral maneuvers are not

desirable since they reduce the missile speed drastically, degrading the intercept performance.
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FIGURE 1. Simplified Homing Guidance Geometry

The quadratic form of (2.21) is chosen to utilize the benefit of the LQ formulation. Note that

c = 1, B = 1 and D = [1 0]. Hence, (2.16) and (2.18) can be easily integrated as

R(t) =

[
1
tgo

]
, Q(t) = −1

3
t3go (2.23)

where tgo � tf − t, which is called the time to go. Substituting (2.23) into (2.17), we obtain

the LQ optimal guidance law stated as

u∗ =
3

t2go
(z + νtgo) (2.24)

The guidance law of (2.24) requires the time-to-go information which is not readily available

from passive seekers such as infrared or vision sensors. However, (2.24) can be rewritten as a

function of variables that are directly measured by passive seekers: For small LOS angles, we

see that σ ≈ z/R where R is the range to go. Since the missile velocity is assumed constant

and the LOS angle is small, the missile velocity along the X-axis is also assumed constant.

Then, the range to go is expressed as R = Vctgo where Vc is the closing velocity, and the LOS

angle can be written in terms of z and tgo as

σ =
z

Vctgo
(2.25)

Then differentiation of (2.25) gives that

σ̇ =
1

Vct2go
(z + νtgo) (2.26)

and comparison of (2.24) and (2.26) shows that

u∗ = 3Vcσ̇ (2.27)

It is very interesting that the optimal guidance law of (2.27) takes the form of classical

proportional navigation (PN) known as

uPN = NVcσ̇ (2.28)
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where the navigation constant (or the guidance gain), N , was previously chosen from 3 to 5

by experience. Proportional navigation has been widely used since the birth of guided missile

technology in the 1950’s. Note that LQ optimal guidance proves by theory that proportional

guidance of N = 3 is optimal in the LQ sense for the intercept of non-maneuvering targets [3].

Generally speaking, a missile operated in the atmosphere relies on the aerodynamic forces

for lateral (perpendicular to the velocity vector) maneuvers. In the 3-dimensional space, we

can define two wind angles, angle of attack and sideslip angle, to denote the direction of the

velocity vector with respect to the X-axis of the missile body. The accelerations produced by

the angle of attack and the sideslip angle are called normal acceleration and lateral accelera-

tion, respectively, or just lateral accelerations, collectively. The motion associated with normal

acceleration is called longitudinal motion and that associated with lateral acceleration called

lateral motion or directional motion. For axis-symmetric missiles, the dynamic characteristics

of the longitudinal motion and the directional motion are identical so that two independent

guidance laws of the same structure are used for 3-dimensional guidance. For example, one

channel (pitch channel) of the guidance algorithm handles the guidance in the vertical plane

while the other channel (yaw channel) is responsible for the guidance in the horizontal plane.

(The directions of normal and lateral accelerations may not be aligned with the vertical and

horizontal directions, depending on applications.)

2.4. LQ Optimal Homing Guidance for Intercept with Specified Impact Angle. The LQ

optimal guidance law discussed above can be extended to handle the terminal impact-angle

constraint by a simple modification in the problem formulation: Suppose that we want the

missile to approach to the target with σ(t) = 0 as tgo → 0 . This objective can be achieved

by imposing σ(tf ) = 0 and σ̇(tf ) = 0, and (2.25) and (2.26) translate these conditions to

z(tf ) = 0 and ν(tf ) = 0. The new terminal condition on the state gives

D =

[
1 0
0 1

]
(2.29)

then R(t) and Q(t) are integrated as

R(t) =

[
1 0
tgo 1

]
, Q(t) = −

[
t3go/3 t2go/2
t2go/2 tgo

]
(2.30)

Finally, the optimal guidance law for intercept and zero relative impact angle is obtained in

feedback form as

u∗ =
1

t2go
(6z + 4νtgo) (2.31)

For stationary targets, this guidance law can be expressed in terms of angle variables as

u∗ =
1

tgo
(6σ − 4γ) (2.32)

where γ is the flight path angle of the missile relative to the target; γ = −ν/Vc.
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3. EXTENSION OF OPTIMAL GUIDANCE LAWS

In this section various extensions of the basic LQ optimal guidance laws described above

are introduced. First, we discuss guidance laws for which the cost function is weighted by

the time to go or some arbitrary function of the time to go. The next topic is about how to

handle the dynamic lag produced by the missile’s dynamics and the autopilot, which is the

controller to produce the lateral acceleration as commanded by the guidance law. Then various

extensions of LQ optimal guidance for the control of impact angle, impact time, or both of

them are introduced. The last topic of this section is integrated guidance which merges the

autopilot design with the guidance law design.

3.1. Weighted Cost Function. The quadratic cost function of (2.21) is a simple integration

of the control energy over the engagement time interval. However, excessive missile maneuver

near the impact point may not be desirable since the target information from the seeker is not

much reliable at a very close range. Furthermore, the time to go information may not be very

accurate due to various reasons so that a guidance law written in terms of the time to go can

produce large steering errors if this is the case. To circumvent this difficulty we may modify

the cost function as

J =
1

2

∫ tf

t0

u2

tkgo
dt, k ≥ 0 (3.1)

Since large weights given by 1/tkgo discourage the control activities near the impact, we can

expect the optimal guidance command u∗(t) to converge to 0 as tgo → 0.

Cho [4] considered this problem for the first time to obtain the closed-form solution ex-

pressed as

u∗ =
1

t2go
[(k + 2)(k + 3)z + 2(k + 2)νtgo] (3.2)

Note that the exponent k is a parameter that the designer can freely choose to shape the missile

trajectory. Ryoo et al. [5] extended the guidance problem subject to time-to-go weighted cost

functions to include impact angle constraints. Furthermore, Lee et al. [6] was successful to

derive the solution of the LQ guidance problem with arbitrary weighting functions given as

J =
1

2

∫ tf

t0

W (t)u(t)2dt (3.3)

It is surprising that the optimal guidance command for arbitrary weighting functions is still

written in the simple form of the basic LQ guidance laws:

u∗ =
k1(tgo)

t2go
z +

k2(tgo)

tgo
ν (3.4)

although k1(tgo) and k2(tgo) are to be calculated by backward integration of three differential

equations associated with the weighting function. Recent application of this development for

trajectory shaping of anti-tank missiles can be found in Ryu et al. [6]. In this work, the weight
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function is chosen to put more control energy during the initial climbing phase and the terminal

homing phase while restricting maneuvers in the middle.

3.2. Dynamic Lag. In Section 2 we assume that the acceleration command generated by the

guidance law is realized instantly without any dynamic lag or time delay. In reality, it is not

possible at all so that there will be guidance errors if the dynamic lag produced by the autopilot,

which is the commonly-used terminology for the controller of missile systems, and the missile

dynamics are not properly addressed in the guidance law design. To the author’s knowledge,

Cottrell [8] was the first to treat this problem to derive the optimal guidance law in feedback

form. The lag model used in this study is a first-order model expressed as

ȧM =
1

τ
(u− aM ) (3.5)

where aM is the realized lateral acceleration, u the commanded lateral acceleration, and τ the

time constant of the dynamic lag. Later Ryoo et al. [9] have proposed a generalized formulation

of optimal guidance with impact angle constraints for a constant-speed missile with an arbitrary

system order, showing that the optimal guidance command is expressed as a linear combination

of the step and the ramp responses of the missile acceleration. In Section 3.5, we will include

the dynamics of the missile (and the autopilot, if necessary) in the guidance problem to show

the effect of the missile dynamics on the guidance gains.

While the optimal guidance laws based on various dynamic lag models are optimal under

reasonable assumptions, they have two drawbacks in practical implementation. First, the feed-

back of the additional states associated with the dynamic lag is required. As the degree of the

dynamic lag model increases, the number of the state variables to be measured or observed

increases. Second, very accurate estimation of the time to go is required. It is because that the

optimal guidance gain is no longer constant but a function of the time to go for this class of the

optimal guidance laws. Specifically, the guidance gains experience rapid changes when tgo is

of the order of the time constant of the dynamic lag. Since the guidance commands produced

during this period is critical, inaccurate estimation of tgo may result in degradation of the guid-

ance performance rather than improvements. This observation leads to the study of developing

accurate and reliable time-to-go estimation techniques, as observed in a number of works. For

example, Tahk et al. [10] have suggested a recursive time-to-go computation method for pro-

portional navigation which can compensate time-to-go errors due to the path curvature, which

are dependent on the initial heading error. Ryoo et al. [11] have proposed two methods of time-

to-go calculation for impact-angle-control guidance laws by approximating the curved path as

a 3rd-order polynomial function. As a matter of fact, the time to go depends on the guidance

law; for example, proportional navigation and an impact-angle-control guidance law will pro-

duce different time-to-go history even if the initial conditions are exactly same. Therefore, any

new guidance law should be proposed with a proper time-to-go estimation method if the time

to go is used for guidance command generation.

Alternative approach to treat the dynamic lag is to exclude the dynamic lag from the for-

mulation but design the guidance law in such a way that the guidance command becomes 0 or
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very small near the intercept point. This approach relies on trajectory shaping to avoid exces-

sive maneuvers at the final phase of homing guidance, resulting in guidance performance less

sensitive to the time-to-go errors. Polynomial guidance to be discussed in Section 4 is used for

such purpose.

The extreme opposite of the trajectory shaping such as polynomial guidance is integrated

guidance that will be discussed in Section 3.5. Conventionally, the guidance law assumes that

the missile has an autopilot system for realization of the acceleration commands generated

by the guidance algorithm. In other words, the guidance law and the autopilot are designed

separately. However, it can be beneficiary to treat them simultaneously if the dynamic lag is

large or a very small miss distance is required to achieve the mission objectives. Since the full

dynamic model of the missile (and the autopilot if used) is included in the formulation of LQ

optimal control, the full state feedback is required for integrated guidance.

3.3. Impact Angle Control. Impact angle control is important for many missile applications.

Anti-tank missiles try to hit the top part of the hostile tank where the armor is a lot thinner

than the front and lateral sides. By doing so, the kill probability of a single shot can be max-

imized. For anti-ship missiles, attacking the target ship along the least defended direction is

crucial since the modern ship defense systems have a good capability of neutralizing incom-

ing missiles. For certain hard targets, hitting the target with a right angle to the surface is a

requirement. Or target visibility of the seeker can be heavily dependent on the impact angle.

Since the impact angle is an important parameter for the effectiveness of missile systems,

there have been numerous studies on guidance laws that can satisfy the impact angle require-

ments. As demonstrated in Section 2.4, an LQ optimal guidance law can be derived for impact

angle control by simply adding an extra terminal condition on the missile velocity. Examples

of recent studies on impact-angle-control guidance laws based on LQ optimal control can be

found in [5, 6, 7, 9, 11, 12, 13]. Polynomial guidance to be discussed in Section 4 basically

includes impact angle control as found in [14, 15, 16, 17]. Previous studies also include a

class of generalized impact-angle-control guidance laws studied in [18, 19, 20]. Impact angle

control is also an important topic in the study of other guidance methodology such as sliding

mode control. One recent example can be found in [21].

Impact-angle-control guidance laws are also useful in the mid-course phase of missile guid-

ance. For long-range missile applications, the missile needs to approach the hand-over region,

where the transition from the mid-course phase to the terminal homing phase takes place, with

a set of proper conditions on the flight path angle and the look angle (the angle between the

X-axis of the missile and the LOS) for the seeker to find the target without difficulty. Since

impact angle control can produce a highly curved trajectory, the target may not be within the

field of view (FOV) of the seeker when the seeker is turned on. Jeon et al. [22] have proposed

the optimal impact-angle-control guidance law that takes care of the seeker FOV, and then Park

et al. [23] studied the same problem including the flight path angle constraint.

3.4. Impact Time Control. Until the salvo attack of multiple missiles is seriously considered,

the impact time of the intercept engagement was not an issue. If many missiles are going to

attack a single target heavily defended by various defense systems, however, the arrival time
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of each missile can be an important parameter in view of weapon effectiveness. Suppose that

a close-in weapon system (CIWS) of the target vessel has a very high kill probability against

hostile anti-ship missiles. Sending several missiles one after another in a serial fashion will

not be quite successful in this situation. But if several missiles are attacking the same target

simultaneously, the CIWS gun may have to allow some of the missiles to penetrate the defense

system to reach the ship since the gun is only able to engage with a single target at a time.

The first published study on impact time control has been conducted by Jeon et al. [24]. In

this study, a bias uF is introduced to the guidance command as

u = uB + uF (3.6)

and the control energy of uB is optimized for an arbitrary constant uF by applying the LQ

optimal guidance technique. For target intercept with zero miss, the optimal solution turns out

to be

u∗ = uPN − 1

2
uF (3.7)

Note that the intercept condition is automatically satisfied for any uF . Thus, we can utilize

the freedom in choosing uF to meet the impact time requirement. The magnitude of uF can

be determined from the relationship between the estimated time-to-go error of PN and its sen-

sitivity to uF . The impact-time-control guidance law consists of two feedback paths; one for

conventional PN and another for time-to-go correction.

The use of a bias term has been again adopted by Lee et al. [25] for derivation of the

guidance law for impact time control together with impact angle control. To obtain more degree

of freedom to satisfy the impact angle constraint, the state vector is augmented to include

the lateral acceleration and the lateral jerk (time derivative of acceleration) is defined as the

guidance command. By assigning a suitable impact angle to each missile, this guidance law

can make the ship defense more vulnerable to a salvo attack.

If the missile is equipped with a certain propulsion system, the arrival time can be con-

trolled by adjusting the thrust level. However, it can be done more easily by trajectory shaping

proposed in these studies while the speed is kept constant. Strictly speaking, however, the

impact-time-control guidance laws are not control energy optimal since the control energy of

uB is optimized instead of uB + uF .

It is noted that an alternative approach for impact time control of salvo attacks has been

proposed by Jeon et al. [26], which relies on the communication between the missiles during

the engagement. In this method, the missiles use PN for guidance but the guidance gains are

continuously tuned to synchronize the arrival times. The larger the guidance gain, the shorter

the flight time since the missile turns to the target earlier.

3.5. Integrated Guidance. For integrated guidance, the state vector includes three groups of

state variables; xk for the kinematics of the engagement, xt for the target dynamics, and xm
for the target dynamics. The homing kinematics is already given by (2.19) and (2.20). Now
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suppose that the target dynamics is modeled as

ẋ = Ftxt +Gtut (3.8)

at = Htxt

where ut , the maneuver input of the target, is usually modeled as a white noise process. This

assumption is justified since ut is neither known nor predictable in real homing engagements.

Similarly, the missile dynamics is represented by

ẋm = Fmxm +Gmum (3.9)

am = Hmxm

where um is the guidance command input. Note that um is either the lateral acceleration

command or the control surface deflection command. The former case requires an autopilot

system.

The overall system dynamics for homing guidance is then represented as

ẋ = Fx+Gu+ Lw (3.10)

where u = um, w = ut and the state variable x is defined as

x =
[
xk xt xm

]T
(3.11)

The matrices F, G, L are given as

x =
[
xk xt xm

]T
(3.12)

F =

⎡
⎣ Fk Fct Fcm

0 Ft 0
0 0 Fm

⎤
⎦

Fk =

[
0 1
0 0

]
, Fct =

[
0
Ht

]
, Fcm =

[
0

−Hm

]
,

G =

⎡
⎣ 0

0
Gm

⎤
⎦ , L =

⎡
⎣ 0
Gt

0

⎤
⎦ ,

Then, LQ optimal guidance discussed in Section 2 is applied with the cost function of (2.21)

and the terminal condition

RT
f xf = 0, Rf =

[
1 0 0 · · · 0

]T
(3.13)

for zero miss distance. The optimal guidance command is obtained in a straight manner as

described in Section 2:

u = GTRQ−1RTx (3.14)

Ṙ = −F TR, R(tf ) = Rf (3.15)

Q̇ = RTGGTR, Q(tf ) = 0 (3.16)
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Let ZEM denote the zero-effort miss, which is defined as the miss obtained by setting the

guidance command to zero from the current time to the terminal time. Using (3.15), we can

show that

ZEM = RTx = RT
k xk +RT

t xt +RT
mxm (3.17)

Define a scalar variable p(t) as

p = GTR = GT
mRm (3.18)

and denote Q(t) as q(t). Then, (3.16) is rewritten as

q̇ = RTGGTR = RT
mGmG

T
mRm, q(tf ) = 0 (3.19)

or

q̇ = p2, q(tf ) = 0 (3.20)

The guidance gain Λ(t) is defined as

Λ

t2go
=
p

q
(3.21)

Then, the optimal guidance command is expressed as

u∗ =
p

q
(ZEM) =

Λ

t2go
(ZEM). (3.22)

Closed-Form Solution of the Optimal Homing Guidance:

The solution to the optimal homing guidance problem is obtained by integrating (3.15) and

(3.16). A tedious calculation gives p(t) and q(t) as [27]

p(tgo) = GT
m[I − eF

T
mtgo ](F−2

m )THT
m + tgoG

T
m(F−1

m )THT
m (3.23)

q(tgo) = −k22tgo − k1k2t
2
go −

1

3
k21t

3
go − 2k2HmF

−3
m (I − eFmtgo)Gm (3.24)

+ 2k1{HmF
−3
m eFmtgo +HmF

−4
m (I − eFmtgo)}Gm

+ (HmF
−2
m )X(HmF

−2
m )T

where k1 = HmF
−1
m Gm and k2 = HmF

−2
m Gm, and the matrix X satisfies

FmX +XF T
m = GmG

T
m − eFmtgoGmG

T
me

FT
mtgo (3.25)

The optimal guidance gain Λ(tgo) is directly computed form the solutions of p(tgo) and

q(tgo). It is noted that p(tgo) and q(tgo) are irrelevant to the target dynamics, and so is Λ(tgo).
However, ZEM is dependent on the target dynamics as well as the missile dynamics. For small

LOS angles, the optimal guidance command can be expressed as

u∗ = Λ(tgo)

[
σ̇Vc +

RT
t xt +RT

mxm
t2go

]
(3.26)
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It is observed that the first term of the optimal guidance law of (3.31) takes the form of

proportional navigation but the guidance gain is, however, time varying. The closed-form

solution of the optimal guidance law does not require iterative numerical methods but requires

the evaluation of matrix exponential functions and a Lyapunov equation solver.

Optimal Guidance Gain for Infinitely Large Time-To-Go:

Form (3.23) it is seen that

p∞ = GT
mRm∞ ≈ (HmF

−1
m Gm)T tgo (3.27)

where the subscript ∞ denotes the limit value of the variable for the case tgo → ∞. The

steady-state gain from u to aM of the missile dynamics is defined as

ks = −HmF
−1
m Gm (3.28)

Then, it is easy to see that

p∞ ≈ −kstgo, q∞ ≈ −1

3
k2sst

3
go (3.29)

As tgo → ∞, the optimal guidance command can be approximated as

u∗∞ =
p∞
q∞

(Z + νtgo +RT
m∞xm) ≈ 3

kst2go
(z + νtgo + (HmF

−1
m )Txmtgo) (3.30)

The guidance gain is given as

Λ∞ =
3

ks
(3.31)

If an autopilot system is employed, then ks = 1 and we have PN of a Λ∞ = 3 as expected.

Optimal Guidance Gain for Very Small Time-To-go:

Note that eF
t
mtgo can be expressed as a series of tgo for an arbitrarily small time-to-go.

eF
t
mtgo = I + F t

mtgo +
1

2
(F t

mtgo)
2 +

1

6
(F t

mtgo)
3 + · · · (3.32)

Substitute (3.32) into (3.23) to obtain that

po = GT
mRmo = −

∞∑
i=1

1

(i+ 1)!
μit

(i+1)
go (3.33)

where μi is defined as μi = HmF
i−1
m Gm which is identified as the i-th Markov parameter of

the missile dynamic model represented by (Fm, Gm, Hm) [28]. Suppose that μk is the first

nonzero Markov parameter. Then, we can show that, as the time-to-go goes to zero,

Λo =
po
qo
t2go ≈

[2(k + 1) + 1](k + 1)!

μktkgo
(3.34)

For the transfer function of the missile dynamics expressed as

Tm(S) =
b1s

n−1 + b2s
n−2 + · · ·+ bn

sn + a1sn−1 + a2sn−2 + · · ·+ an
(3.35)
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the coefficients of the numerator of Tm(S) are related to the Markov parameters as follows

[28];

b1 = μ1, b2 = μ2 + a1μ1, b3 = μ3 + a1μ2 + a2μ1 · · · (3.36)

Eq. (3.36) implies that if the pole excess number of Tm(S) is k , then μk is the first nonzero

Markov parameters. Thus, the larger the pole excess number is, the faster the guidance gain

increases, as shown in (3.34). Also, the sign of the optimal guidance gain is determined by the

sign of μk.

Tail-controlled and canard-controlled missiles are most common for the air-to-air missile

application. For tail-controlled systems, the transfer function is non-minimum phase, and the

first Markov parameter is negative. Hence, the sign of the optimal guidance gain changes to

a negative value as the time to go decreases to 0. For canard-controlled systems, the optimal

control gain is always positive since the transfer function is minimum phase.

4. POLYNOMIAL GUIDANCE

In this section, the basic idea of polynomial guidance techniques is described and recent

studies are introduced. Generalized impact-angle-control guidance laws that are closely related

with polynomial guidance are also discussed.

4.1. Time-to-go Polynomial Guidance. The idea of time-to-go polynomial guidance was de-

veloped early 2007 for missile guidance with zero terminal angle of attack [14]. To maximize

the effectiveness of the warhead, a certain class of missile systems requires that the angle of

attack at the impact time is zero. This requirement can be rigorously handled only if the rota-

tional dynamics of the vehicle is included in the problem formulation and the angle of attack

is one of the state variables. Fortunately, the constraint on the terminal angle of attack can

be replaced by a constraint on the terminal maneuver acceleration if the rotational motion of

the vehicle near the target is minimal. The terminal acceleration can easily be made zero by

applying the time-to-go polynomial guidance method for which the missile lateral acceleration

is assumed to take the form of

aM = cmt
m
go + cnt

n
go (4.1)

Note that the zero terminal acceleration condition is already satisfied as long as m and n are

positive and the coefficients cm and cn are finite. These coefficients are determined to satisfy

the conditions on terminal miss and velocity; for example, z(tf ) = 0 and ν(tf ) = 0 . Once

these coefficients are calculated, we can express the missile acceleration aM in a feedback form

aM =
k1
t2go
z +

k2
tgo
ν (4.2)

where the gravity is neglected for simplicity. It is interesting to observe that the missile ac-

celeration takes the same form as the LQ guidance laws. The feedback gains k1 and k2 are

dependent to m and n as shown below.

k1 = (m+ 2)(n+ 2), k2 = (m+ n+ 3) (4.3)
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The values of k1 and k2 for several combinations of m and n are given in Table 1. Note that

the time-to-go polynomial guidance law with m = 0 and n = 1 is identical to the LQ optimal

guidance law for impact angle control shown in (2.31).

TABLE 1. Examples of Polynomial Guidance Laws

Polynomial Type k1 k2 Remarks

m = 0, n = 1 6 4 aM (tf ) �= 0
m = 1, n = 2 12 6 aM (tf ) = 0
m = 2, n = 3 15 7 aM (tf ) = 0
m = 2, n = 3 20 8 aM (tf ) = ȧM (tf ) = 0

The merit of time-to-go polynomial guidance is that the trajectory shaping can be done easily

by testing several combinations of m and n. Furthermore, the guidance performance is less

sensitive to the time-to-go estimation error if the lateral acceleration and its time derivatives

are designed to converge to zero as tgo goes to 0. Extensive analysis of the characteristics

of time-to-go polynomial guidance has been conducted by Lee et al. [15]. In this work, the

maximum acceleration command, the range of the look angle (the angle between the missile’s

X-axis and the LOS) are analyzed in details, a method for selection of the polynomial type is

proposed, and time-to-go estimation is addressed. Inspired by the method used in [24], Kim

et al. [16] have extended polynomial guidance to control impact time as well as impact angle,

using an additional constant in the form of the lateral command;

aM = cmt
m
go + cnt

n
go + cl (4.4)

where cl is determined to meet the impact-time requirement. Another study on time-to-go

polynomial guidance is observability enhancement for passive seekers [17]. Since the range

information is not provided by a passive seeker, the missile needs to exert additional lateral

maneuvers to improve target observability. Adding a term proportional to z as

aM =
k1
t2go
z +

k2
tgo
ν + k3z (4.5)

it is possible to produce continuous oscillatory motions in the lateral position. This type of

perturbations prevents the LOS rate from converging to zero quickly.

Time-to-go (or range-to-go) polynomial guidance is not based on LQ optimal guidance but

a polynomial guidance law is a solution of an LQ optimal guidance problem as proved by Lee

et al. [18]. Further discussion on this issue is given in the next section.

4.2. Generalized Impact-Angle-Control Guidance Laws. Time-to-go polynomial guidance

laws take the form of

u∗ =
k1
t2go
z +

k2
tgo
ν (4.6)
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and the LQ optimal guidance laws considered in Section 2 are reduced to the same form.

Even for arbitrary weighting functions the LQ guidance laws can be expressed by this form

although k1 and k2 are no longer constant. Lee et al. [18] have studied the inverse problem

of finding the cost function associated with the guidance law of (4.6). This study proves that

there exists an LQ optimal guidance problem for any arbitrary combination of k1 and k2. The

cost function of the corresponding LQ problem has quadratic penalties on the states as well

as on the control. Furthermore, this study analyzes the domain of (k1, k2) that produces zero

miss and zero terminal impact angle, and then investigates the characteristics of the optimal

trajectory. Table 2 provides the summary on the trajectory shapes determined by the choice of

k1 and k2.

From (4.3) and Table 2 we observe that a polynomial guidance law belongs to Category 1 if

the following conditions are satisfied:

mn ≥ 0, (m− n)2 > 0, m+ n > 0 (4.7)

Note that the conditions of (4.7) are satisfied if m and n are two different nonnegative num-

bers. In addition, we also observe that the generalized impact-angle-control guidance laws of

Category 2 and 3 cannot be obtained as long as m and n are real numbers.

TABLE 2. Trajectory Shapes of Generalized Impact-Angle-Control Guidance

Category Domain Trajectory Shape

1 2(k2 − 1) ≤ k1 <
(
k2+1
2

)2
, k2 > 3 Polynomial

2 k1 =
(
k2+1
2

)2
, k2 > 3 Polynomial + Logarithmic

3 k1 >
(
k2+1
2

)2
, k2 > 3 Polynomial + Logarithmic +Trigonometric

The analytical solutions of generalized impact-angle-control guidance with dynamic lag has

been obtained by Lee et al. [19, 20]. The solution of the LQ optimal guidance law for impact

angle control is first obtained in [19], and then extended for the class of generalized impact-

angle-control guidance law in [20]. The analytic solutions can be utilized for investigating

the divergent behavior of the guidance loop near the impact time and for selecting suitable

guidance laws to minimize the terminal miss produced by the dynamic lag.

5. CONCLUSION

LQ optimal guidance for missile systems is one of the most successful applications of op-

timal control theory. It has been able to meet various mission objectives such as zero miss

(perfect intercept), specified impact angle, and specified impact time in an energy efficient way

by using a simple feedback control structure. Although there still exist many unsolved prob-

lems associated with time-varying velocity, constrained maneuver capability, and constrained
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seeker FOV, LQ optimal guidance and its extensions are being utilized to obtain practical solu-

tions through simplification and approximations. Due to the richness of its theory, flexibility,

and application experience, LQ optimal guidance methodology is expected to remain as the

most viable tool for missile guidance in the future.
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