BIPARTITE POSETS WITH A UNIQUE OPTIMAL LINEAR EXTENSION

Young-Jin Yoon

1. Introduction

Let P be a finite poset and let |P| be the number of vertices in P. A subposet of P is a subset of P with the induced order. A chain C in P is a subposet of P which is a linear order. The length of the chain C is |C|-1. A poset is bipartite if the length of each maximal chain is one. A linear extension of a poset P is a linear order $L=x_1,x_2,\ldots,x_n$ of the elements of P such that $x_i < x_j$ in P implies i < j.

Let P and Q be two disjoint posets. The disjoint sum P+Q of P and Q is the poset on $P \cup Q$ such that x < y if and only if $x, y \in P$ and x < y in P or $x, y \in Q$ and x < y in Q. The linear sum $P \oplus Q$ of P and Q is obtained from P+Q by adding the relation x < y for all $x \in P$ and $y \in Q$.

Throughout this section, L denotes an arbitrary linear extension of P. Let $a,b \in P$ with a < b. Then b covers a, denoted $a \prec b$, provided that for any $c \in P$, $a < c \leq b$ implies that c = b. A (P,L)-chain is a maximal sequence of elements z_1, z_2, \ldots, z_k such that $z_1 \prec z_2 \prec \cdots \prec z_k$ in both L and P. Let c(L) be the number of (P,L)-chains in L.

A consecutive pair (x_i, x_{i+1}) of elements in L is a jump (or setup) of P in L if x_i is not comparable to x_{i+1} in P. The jumps induce a decomposition $L = C_1 \oplus \cdots \oplus C_m$ of L into (P, L)-chains C_1, \ldots, C_m where m = c(L) and $(\max C_i, \min C_{i+1})$ is a jump of P in L for $i = 1, \ldots, m-1$. Let s(L, P) be the number of jumps of P in L and let s(P) be the minimum of s(L, P) over all linear extensions L of P. The number s(P) is called the $jump\ number$ of P. If s(L, P) = s(P), then

Received October 11, 1995.

¹⁹⁹¹ AMS Subject Classification: 06A07.

Key words and phrases: jump number, bipartite poset, optimal linear extension. This work was partially supported by KOSEF K94001.

L is called a (jump) optimal linear extension of P. We denote the set of all optimal linear extensions of P by $\mathcal{O}(P)$. If $|\mathcal{O}(P)| = |\mathcal{O}(Q)| = 1$, then $|\mathcal{O}(P \oplus Q)| = 1$ but $|\mathcal{O}(P + Q)| > 1$.

A fence on n elements is a bipartite poset $F_n = \{a_1 < a_2, a_2 > a_3, a_3 < a_4, \ldots\}$. We know (See [2])

$$|\mathcal{O}(F_n)| = \left\{ egin{array}{ll} 1, & ext{if n is even} \ 2^{(n-1)/2}, & ext{if n is odd.} \end{array}
ight.$$

2. Main Results

We denote the set of maximal [minimal] elements of a poset P by Max(P)[Min(P)]. Let \mathcal{F}_{2n} be the family of bipartite posets P such that if $Max(P) = \{a_1, a_2, \ldots, a_n\}$ and $Min(P) = \{b_1, b_2, \ldots, b_n\}$, then $b_1 < a_1, a_1 > b_2, b_2 < a_2, \ldots, b_n < a_n$ with possible comparabilities $a_i > b_i$ for some i, j where $1 \le i < j - 1 \le n - 1$.

THEOREM. A bipartite poset P has a unique optimal linear extension if and only if $P \in \mathcal{F}_{2n}$ for some n.

Proof. (\Longrightarrow) If P is not connected, then we have $|\mathcal{O}(P)| > 1$. Thus P is connected.

Case 1: $|\{b \in Min(P) : a > b\}| \ge 2$ for every $a \in Max(P)$.

In this case, every optimal linear extension contains at least one singleton (P, L)-chain in Min(P). If there are more than one singleton (P, L)-chains in Min(P), then we have $|\mathcal{O}(P)| > 1$. If there is only one such singleton, then there exists $a \in Max(P)$ such that $|\{b \in Min(P) : a > b\}| = 2$, say $b_1 < a$, $b_2 < a$. Thus we have two optimal linear extensions $b_1 \oplus \{b_2, a\} \oplus \ldots$ and $b_2 \oplus \{b_1, a\} \oplus \ldots$, so $|\mathcal{O}(P)| > 1$.

Now, if Case 1 is not true, then one of the following two cases holds.

Case 2: $|\{a \in Max(P) : |\{b \in Min(P) : a > b\}| = 1\}| \ge 2$. In this case, we have $|\mathcal{O}(P)| > 1$.

Case 3: $|\{a \in Max(P) : |\{b \in Min(P) : a > b\}| = 1\}| = 1.$

In this case, denote such elements by a_1, b_1 . Now consider a poset $P - \{a_1, b_1\}$. If $P - \{a_1, b_1\}$ holds for Case 1 or Case 2 instead of P,

then we have $|\mathcal{O}(P)| > 1$. If $P - \{a_1, b_1\}$ holds for Case 3, then denote such elements by a_2, b_2 . Repeat the same process for $P - \{a_1, b_1, a_2, b_2\}$. By the same argument, we get P by $\{a_1, b_1, a_2, b_2, \ldots, a_n, b_n\}$ for some n. Thus $P \in \mathcal{F}_{2n}$.

 (\Leftarrow) For every $P \in \mathcal{F}_{2n}$, take a linear extension $L = \{b_n, a_n\} \oplus \{b_{n-1}, a_{n-1}\} \oplus \cdots \oplus \{b_1, a_1\}$. Then L is a unique optimal linear extension of $P \in \mathcal{F}_{2n}$.

By observing Theorem, we can count the number of \mathcal{F}_{2n} .

COROLLARY. The number of 2n vertices bipartite posets with a unique optimal linear extension is $2^{\binom{n-1}{2}}$.

Proof. By the construction of P in the proof of Theorem, we can add some comparabilities to $F_{2n} = \{b_1 < a_1, a_1 > b_2, b_2 < a_2, \ldots, b_n < a_n\}$, say $a_i > b_j$ for some i, j such that $1 \le i < j - 1 \le n - 1$. Here, the number of possible choices for $\{i, j\}$ is $\binom{n-1}{2}$. By binomial theorem, we get the result.

ACKNOWLEDGEMENT. The author thanks Dr. Hyung Chan Jung for his kind comments and encouragements.

References

- M. Chein and M. Habib, The jump number of dags and posets: an introduction, Ann. Disc. Math. 9 (1980), 189-194.
- 2. H. C. Jung, Lower bounds of the number of jump optimal linear extensions: products of some posets, Bull. Korean Math. Soc. 32 (1995), 171-177.

DEPARTMENT OF MATHEMATICS, KUNSAN NATIONAL UNIVERSITY, CHUNBUK 573-701, KOREA

E-mail: yoonyj@knusun1.kunsan.ac.kr