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BIPARTITE POSETS WITH A UNIQUE
OPTIMAL LINEAR EXTENSION

YouNG-JIN YoonN

1. Introduction

Let P be a finite poset and let |P| be the number of verticesin P. A
subposet of P is a subset of P with the induced order. A chain C in P
is a subposet of P which is a linear order. The length of the chain C is
|C| —1. A poset is bipartite if the length of each maximal chain is one.
A linear ertension of a poset P is a linear order L = z1,z5,...,2, of
the elements of P such that z; < z; in P implies i < j.

Let P and @ be two disjoint posets. The disjoint sum P + Q of P
and @ is the poset on P U @ such that z < y if and only if z,y € P
and r <yin Porz,y € Q and < y in Q. The linear sum P & Q of
P and @ is obtained from P + @ by adding the relation = < y for all
r€ Pandye€ Q.

Throughout this section, L denotes an arbitrary linear extension of
P. Let a,b € P with a < b. Then b covers a, denoted a < b, provided
that for any ¢ € P, a < ¢ < b implies that ¢ = b. A (P, L)-chain is a
maximal sequence of elements zy, z5,..., zx such that zy < z9 < --+ <
zk in both L and P. Let ¢(L) be the number of (P, L)-chains in L.

A consecutive pair (r;,zi41) of elements in L is a jump (or setup)
of P in L if z; is not comparable to z;4; in P. The jumps induce a
decomposition L = C; @ --- & Cp, of L into (P, L)-chains C,,...,C,,
where m = ¢(L) and (maxC;, minC;y{) is a jump of P in L for i =
1,...,m — 1. Let s(L, P) be the number of jumps of P in L and let
5(P) be the minimum of s(L, P) over all linear extensions L of P. The
number s(P) is called the jump number of P. If s(L, P) = s(P), then
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L is called a (jump) optimal linear extension of P. We denote the set
of all optimal linear extensions of P by O(P). If |O(P)| = |O(Q)| = 1,
then |O(P & Q)| = 1 but |O(P+ Q)| > 1.

A fence on n elements is a bipartite poset F, = {a; < ag,a; >
as,a3 < ag,...}. We know (See [2])

1, if n i1s even

O(F,)| =
|O(Fn)] {Qm—l)/z’ if n is odd.

2. Main Results

We denote the set of maximal [minimal] elements of a poset P by
Maz(P)[Min(P)]. Let F2, be the family of bipartite posets P such
that if Maz(P) = {a1,as,...,a,} and Min(P) = {by,by,... by}, then
by < ai,a1 > by, by < az,...,b, < a, with possible comparabilities
a; > b; for some ¢, j where 1 <:<j—-1<n-1

THEOREM. A bipartite poset P has a unique optimal linear exten-
sion if and only if P € F», for some n.

Proof. (=) If P is not connected, then we have [O(P)| > 1. Thus
P is connected.

Case 1: |{b € Min(P):a > b}| > 2 for every a € Max(P).

In this case, every optimal linear extension contains at least one
singleton ( P, L)-chain in Min(P). If there are more than one singleton
(P, L)-chains in Min(P), then we have [O(P)| > 1. If there is only one
such singleton, then there exists a € Maz(P) such that |{{b € Min(P):
a > b}| = 2, say b < a, by < a. Thus we have two optimal linear
extensions by @ {by,a} @ ... and by & {b1,a} ..., s0 [O(P)| > 1.

Now, if Case 1 is not true, then one of the following two cases holds.

Case 2: |{a € Max(P):|{b€ Min(P):a> b} =1} > 2.

In this case, we have |O(P)| > 1.

Case §: |{a € Maz(P):|{b € Min(P):a>b}| =1} =1

In this case, denote such elements by a;,b;. Now consider a poset
P —{a;,b}. If P~ {a;,b} holds for Case 1 or Case 2 instead of P,
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then we have |O(P)| > 1. If P — {a;,b,} holds for Case 3, then denote
such elements by ay, b,. Repeat the same process for P — {ay,by,as.b,}.
By the same argument, we get P by {a;,b;,a4,b,,...,a,,b,} for some
n. Thus P ¢ F;,,.

(=) For every P € Fy,, take a linear extension L = {b,.a,} ®
{brn-1,an-1}&&{b1,a1}. Then L is a unique optimal linear extension
of P ¢ Fy,.

By observing Theorem, we can count the number of Fy,.

COROLLARY. The number of 2n vertices bipartite posets with a

. - . - . n—1
unique optimal linear extension is 2("2").

Proof. By the construction of P in the proof of Theorem, we can
add some comparabilities to Fo, = {by < aj,a; > by, by < ag....,
bn < an}, say a; > b; for some 7,5 such that 1 <i < j—-1<n -1
Here, the number of possible choices for {i,;} is (";]) By binomial
theorem, we get the result.
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