• Title/Summary/Keyword: optically stimulated luminescent dosimeter

Search Result 14, Processing Time 0.018 seconds

Calibration of Optically Stimulated Luminescent nanoDot Dosimeter for 6 MV Photon Beam (6 MV 광자 빔에 대한 광자극형광나노닷선량계의 교정)

  • Kim, Jongeon;Kim, Seonghu;Lee, Hyoyeong
    • Journal of the Korean Society of Radiology
    • /
    • v.7 no.1
    • /
    • pp.93-98
    • /
    • 2013
  • The purpose of this study is to investigate the calibration of an optically stimulated luminescent nanoDot dosimeter(OSLnD) to 6 MV photon beam. Dose ranges of the calibration of linear and non-linear from the analysis of dose response of the OSLnD were decided. To evaluate the accuracy of calibration equation and the calibration, the sets of the calibration and quality control dosimeter were used to make. The calibrations were performed by the linear and the non-linear in the dose range of 0~300 cGy and 20~1300 cGy, respectively. The errors of the calibration were acquired less than 0.1% respectively from the measurement of the quality control dosimeters for the calibration of linear and the non-linear. This study provides the calibration equation of the OSLnD to the 6 MV photon beam.

Determination of the Effective Energy of X-Ray Beam Using Optically Stimulated Luminescent nanoDot Dosimeters (광자극형광나노닷선량계를 사용한 X선 빔의 유효에너지 결정)

  • Kim, Jongeon;Lee, Sanghun
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.6
    • /
    • pp.375-379
    • /
    • 2015
  • The purpose of this study is to determine the effective energy of a polyenegetic X-ray beam. The half value layer(HVL) of aluminum for 80 kVp X-ray beam was measured by using optically stimulated luminescent nanoDot dosimeters(OSLnDs). The linear attenuation coefficient(${\mu}$) was calculated using the measured HVL. And the mass attenuation coefficient(${\mu}/{\rho}$) was obtained by dividing the linear attenuation coefficient by the density(${\rho}$) of aluminum. The effective energy($E_{eff}$) of the obtained mass attenuation coefficient was determined using data of the X-ray mass attenuation coefficients for photon energies of aluminum given by National Institute of Standards and Technology(NIST). As a result, the HVL value is 2.262 mmAl. The ${\mu}$ value is $3.06cm^{-1}$. The ${\mu}/{\rho}$ value is $1.114cm^2/g$. And the $E_{eff}$ value was determined at 29.79 keV.

Measurement of the Skin Dose of Patient Using the Optically Stimulated Luminescent Dosimeter at Diagnostic Radiography (진단방사선촬영에서 광자극발광선량계를 이용한 환자 피부선량의 측정)

  • Kim, Jong-Eon;Im, In-Chul;Min, Byung-In
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.9
    • /
    • pp.437-442
    • /
    • 2011
  • The purpose of this study is an measurement of the skin dose of a patient by using the OSLD(optically stimulated luminescent dosimeter) under several irradiation conditions of the X-ray beam for diagnostic radiography. The measurements of skin dose were performed for head, chest, and pelvis. And test of reproducibility was carried out at the chest. As a result, we obtained the skin dose at forehead of head to be 1.30 mSv. The skin doses at xiphoid process, breast and apex of the lung of the chest were acquired 0.92, 0.52 and 0.70 mSv, respectively. And we obtained the skin doses at the left pelvis and the right pelvis to be 2.78 and 3.08 mSv, respectively. As for reproducibility, a coefficient of variation was 0.033. The skin doses were exhibited the values corresponding from 1/100 to 1/17 of the dose limit of the public(50 mSv) at the deterministic effect. In order to make accurate measurements of the skin doses for each tube voltage, the measured values have to multiply by the displayed values of reader by a correction factor. The energy response of the OSLD with the tube voltage will be studied in the near future.

Comparison and validation of Brass mesh bolus using tissue equivalent bolus in the breast cancer radiotherapy (유방암 방사선치료시 조직등가보상체와의 비교를 통한 Brass mesh bolus의 유용성 평가)

  • Bong, Juyeon;Kim, Kyungtae;jeon, Mijin;Ha, Jinsook;Shin, Dongbong;Kim, Seijoon;Kim, Jongdae
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.29 no.1
    • /
    • pp.93-101
    • /
    • 2017
  • Purpose: In breast cancer radiotherapy, brass mesh bolus has been recently studied to overcome disadvantage of conventional bolus. The purpose of this study is to investigate the stability of first introduced the brass mesh in the country, and evaluate the skin surface dose of that. Materials and Methods: The measurement of skin surface dose was evaluated to verify similar thickness of the Brass mesh bolus that compared conformal tissue equivalent bolus with 5 mm thickness. We used 6 MV photons on an ELEKTA VERSA linear accelerator and optically stimulated luminescent dosimeter (OSLD). In addition, two opposed beam using IMRT phantom was applied to comparative study of brass mesh bolus between tissue equivalent bolus. Results: The results showed that similar thickness of the Brass mesh bolus was 3 mm compared with 5 mm tissue equivalent bolus by measuring the skin surface dose of solid phantom. The surface dose for IMRT thorax phantom using 3 mm brass mesh bolus was about 1.069 times greater than that using tissue equivalent bolus. Conclusion: In this study, we found that the brass mesh bolus improved better reduction of skin sparing effect and dose uniformity than tissue equivalent bolus. However evaluation for various clinic cases should be investigated.

  • PDF

Characteristic Evaluation of Optically Stimulated Luminescent Dosimeter (OSLD) for Dosimetry (광유도발광선량계(Optically Stimulated Luminescent Dosimeter)의 선량 특성에 관한 고찰)

  • Kim, Jeong-Mi;Jeon, Su-Dong;Back, Geum-Mun;Jo, Young-Pil;Yun, Hwa-Ryong;Kwon, Kyung-Tae
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.22 no.2
    • /
    • pp.123-129
    • /
    • 2010
  • Purpose: The purpose of this study was to evaluate dosimetric characteristics of Optically stimulated luminescent dosimeters (OSLD) for dosimetry Materials and Methods: InLight/OSL $NanoDot^{TM}$ dosimeters was used including $Inlight^{TM}MicroStar$ Reader, Solid Water Phantom, and Linear accelerator ($TRYLOGY^{(R)}$) OSLDs were placed at a Dmax in a solid water phantom and were irradiated with 100 cGy of 6 MV X-rays. Most irradiations were carried out using an SSD set up 100 cm, $10{\times}10\;cm^2$ field and 300 MU/min. The time dependence were measured at 10 minute intervals. The dose dependence were measured from 50 cGy to 600 cGy. The energy dependence was measured for nominal photon beam energies of 6, 15 MV and electron beam energies of 4-20 MeV. The dose rate dependence were also measured for dose rates of 100-1,000 MU/min. Finally, the PDD was measured by OSLDs and Ion-chamber. Results: The reproducibility of OSLD according to the Time flow was evaluated within ${\pm}2.5%$. The result of Linearity of OSLD, the dose was increased linearly up to about the 300 cGy and increased supralinearly above the 300 cGy. Energy and dose rate dependence of the response of OSL detectors were evaluated within ${\pm}2%$ and ${\pm}3%$. $PDD_{10}$ and PDD20 which were measured by OSLD was 66.7%, 38.4% and $PDD_{10}$ and $PDD_{20}$ which were measured by Ion-chamber was 66.6%, 38.3% Conclusion: As a result of analyzing characteration of OSLD, OSLD was evaluated within ${\pm}3%$ according to the change of the time, enregy and dose rate. The $PDD_{10}$ and $PDD_{20}$ are measured by OSLD and ion-chamber were evaluated within 0.3%. The OSL response is linear with a dose in the range 50~300 cGy. It was possible to repeat measurement many times and progress of the measurement of reading is easy. So the stability of the system and linear dose response relationship make it a good for dosimetry.

  • PDF

Measurement of Dose outside a 6 MV Field Edge Using Optically Stimulated Luminescent Nano Dot Dosimeters (광자극형광나노닷선량계를 사용한 6 MV 조사야 가장자리 바깥 선량 측정)

  • Kim, Jongeon;Kim, Wontae
    • Journal of the Korean Society of Radiology
    • /
    • v.8 no.7
    • /
    • pp.449-454
    • /
    • 2014
  • The purpose of this study is(was) to investigate the shielding ratio of 1 mmPb and the off axis ratio outside the field edge at depth of 1 cm from a phantom surface for 6 MV photon beam. A dose of 180 cGy was delivered to a depth of 10 cm for a $10{\times}10cm^2$ and $15{\times}15cm^2$ field in the SAD technique. The off axis ratio was calculated by measuring the dose of optically stimulated luminescent nanoDot dosimeters(OSLnDs) positioned at 2, 4 and 6 cm from the field edge, and the center axis of field. And the shielding ratio of 1 mmPb was calculated by measuring the dose of OSLnDs positioned at 2, 4 and 6 cm from the field edge.. As a result, for a $10{\times}10cm^2$ and $15{\times}15cm^2$ field, the off axis ratios were acquired 0.008-0.023 and 0.011-0.028, respectively. Also the shielding ratios of 1 mmPb were acquired 0.868-0.888 and 0.807-0.842, respectively. These results provide data to protect organs at risk outside the radiation treatment field.

Correction Factor for the Eenergy Dependence of a Optically Stimulated Luminescent Dosimeter in Diagnostic Radiography (진단방사선촬영에서 광자극형광선량계의 에너지의존성에 대한 보정인자)

  • Kim, Jong-Eon;Im, In-Chul;Lee, Hyo-Yeong
    • Journal of the Korean Society of Radiology
    • /
    • v.5 no.5
    • /
    • pp.261-265
    • /
    • 2011
  • The purpose of this study is to calculate correction factors for energy dependence of a nanoDotdosimeter to measure patient's skin dose in diagnostic radiography. The correction factors were calculated by using the values of mean energy for the RQR standard radiation qualities of IEC publicated by Rosado et al. and the energy response graph of dosimeter relative X-ray on phantom calibration provided by landaur corporation. Results showed the correction factors of 1-1.33 over the tube voltage range of 40-50 kVp. Acquired correction factors are considered to be useful in the clinics for the measurement of accurate skin dose at each tube voltage.

Comparison on the Dosimetry of TLD and OSLD Used in Nuclear Medicine (광자극발광선량계와 열형광선량계를 이용한 핵의학과 선량 측정비교)

  • Lee, Wang-Hui;Kim, Sung-Chul;Ahn, Sung-Min
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.12
    • /
    • pp.329-334
    • /
    • 2012
  • For the dosimetry of the radiation workers, film badge, Thermo Luminescent Dosimeter (TLD), and glass dosimeter are being used and recently, there is a growing trend of using Optically Stimulated Luminescence Dosimeter (OSLD) in the world. However, OSLD is only being applied some of the field in Korea and there has been almost no study made related to OSLD. Thus, the accumulated radiation dose of TLD and OSLD that have been most frequently used in the field was compared in the radiation workers of nuclear medicine and their working areasfor 3 months. As a result, the average surface dose showed 0.85 mSv difference with 1.27 mSv for TLD and 2.12 mSv for OSLD while having 0.73 mSv difference for the average depth dose with 1.33 mSv for TLD and 2.06 mSv for OSLD. The surface dose and depth dose of OSLD showed statistically significant result with higher measurement (p<0.05).

Comparison of Shield of Breast, Thyroid, Eyes for Exposure Dose Reduction in Mammography (유방엑스선검사 시 유방, 갑상샘, 안구 피폭선량 감소를 위한 차폐체 비교)

  • An, Se-Jeong;Ahn, Sung-Min
    • Journal of radiological science and technology
    • /
    • v.44 no.3
    • /
    • pp.189-194
    • /
    • 2021
  • This study was conducted to reduce the exposure dose to the breast and adjacent organs as the number of Mammography increased. Therefore, it has been designed a shield in lead, bismuth + tungsten, and bismuth that does not require to be equipped by the patient, in which each type of shield was compared and analyzed of radiation exposure dose to breast, thyroid, and eye. Using a mammography machine, optically stimulated luminescent dosimeter(OSLD) was inserted to bilateral breast, thyroid, and eye of a dosimetry phantom to measure dose radiated onto the phantom. Shielding device was made in different thickness of 2mm, 3mm, and 5mm and dose evaluation was performed by measuring the dose while using lead, bismuth, and bismuth + tungsten prosthesis. When each shields combined with shielding device, were compared of dose, all showed similar does reduction in the dose to breast, thyroid, and eye in both cranialcaudal and mediolateraloblique view. Based on the current study, bismuth and bismuth + tungsten can replace conventional lead shield and it is anticipated to safely and conveniently reduce radiation exposure to breast, thyroid, and eye with the shield that does not require to be equipped.

Patient Exposure Dose Reduction in Coronary Angiography & Intervention (심혈관조영술 및 중재술 시 환자 선량 감소방안)

  • Lim, Do-Hyung;Ahn, Sung-Min
    • Journal of radiological science and technology
    • /
    • v.45 no.1
    • /
    • pp.69-76
    • /
    • 2022
  • This study, the method of reducing the exposure dose by changing the geometrical requirements among the preceding studies and the method of directly wearing a protector on the patient were used to expose the patient. A comparative experiment was conducted on the method of reducing the dose and the most effective method for reducing the exposure dose was investigated. Using the phantom, the dose of the lens, thyroid gland, and gonad gland in the 5 views most used in coronary angiography and intervention accumulated 5 times for 10 seconds at 60~70 kV, 200~250 mA as an automatic controller of the angiography system, and measured by Optically Stimulated Luminescent Dosimeter(OSLD). SID 100 cm and Cine 15 f/s as a control group the experiment was conducted by dividing the experimental group into 3 groups: a group lowered to Cine 7.5 f/s, a phantom protector, and a group lowered to 95 cm SID. As a result of the experiment, showing decrease in exposure dose compared to the control group. Lowering the cine frame may be the simplest and most effective method to reduce the exposure dose, but there is a limit that it cannot be applied if the operator judges that the diagnostic value is small or feels uncomfortable with the procedure. Conclusion as fallow reducing the exposure dose by directly wearing protector is the next best solution, and it is hoped that the conclusions obtained through this study will help reduce the exposure dose to unnecessary organ.