DOI QR코드

DOI QR Code

Determination of the Effective Energy of X-Ray Beam Using Optically Stimulated Luminescent nanoDot Dosimeters

광자극형광나노닷선량계를 사용한 X선 빔의 유효에너지 결정

  • Kim, Jongeon (Department of Radiological Science, Kaya University) ;
  • Lee, Sanghun (Department of Radiological Science, Kaya University)
  • 김종언 (가야대학교 방사선학과) ;
  • 이상훈 (가야대학교 방사선학과)
  • Received : 2015.08.24
  • Accepted : 2015.10.25
  • Published : 2015.10.30

Abstract

The purpose of this study is to determine the effective energy of a polyenegetic X-ray beam. The half value layer(HVL) of aluminum for 80 kVp X-ray beam was measured by using optically stimulated luminescent nanoDot dosimeters(OSLnDs). The linear attenuation coefficient(${\mu}$) was calculated using the measured HVL. And the mass attenuation coefficient(${\mu}/{\rho}$) was obtained by dividing the linear attenuation coefficient by the density(${\rho}$) of aluminum. The effective energy($E_{eff}$) of the obtained mass attenuation coefficient was determined using data of the X-ray mass attenuation coefficients for photon energies of aluminum given by National Institute of Standards and Technology(NIST). As a result, the HVL value is 2.262 mmAl. The ${\mu}$ value is $3.06cm^{-1}$. The ${\mu}/{\rho}$ value is $1.114cm^2/g$. And the $E_{eff}$ value was determined at 29.79 keV.

이 연구의 목적은 다종에너지 X선 빔의 유효에너지를 결정하는데 있다. 80 kVp X선 빔에 대한 알루미늄의 반가층은 광자극형광나노닷선량계들(OSLnDs)을 사용하여 측정하였다. 선감쇠계수(${\mu}$)는 측정된 반가층을 사용하여 계산하였다. 그리고 질량감쇠계수(${\mu}/{\rho}$)는 알루미늄의 밀도로 선감쇠계수를 나누어 얻었다. 얻어진 질량감쇠계수의 유효에너지($E_{eff}$)는 미국표준기술연구소(NIST)에서 주어진 알루미늄의 광자에너지들에 대한 X선질량감쇠계수들의 자료를 사용하여 결정하였다. 결과로서, 반가층, 선감쇠계수 및 질량감쇠계수는 각각 2.262 mmAl, $3.06cm^{-1}$, $1.114cm^2/g$이다. 그리고 유효에너지는 29.79 keV에서 결정되었다.

Keywords

References

  1. S.C. Chen, W.L. Jong, A.Z. Harun, "Evaluation of x-ray beam quality based on measurements and estimations using SpekCalc and Ipem78 models", Malays. J. Med. Sci., Vol. 19, No. 3, pp. 22-28, 2012.
  2. C.S. Reft, "The energy dependence and dose response of a commercial optically stimulated luminescent detector for kilovotage photon, megavoltage photon, and electron, proton, and carbon beams", Med. Phys., Vol. 36, No. 5, pp.1690-1699, 2009. https://doi.org/10.1118/1.3097283
  3. National Institute of Standards and Technology, "NIST measurement services: calibration of x-ray and gamma-ray measuring instruments", NIST Special Publication 250-58, pp. 1-96, 2001.
  4. J.E. Kim, I.C. Im, H.Y. Lee, "Correction factor for the energy dependence of a optically stimulated luminescence dosimeter in diagnostic radiography", Journal of Korean Society of Radiology, Vol. 5, No. 5, pp. 261-265, 2011. https://doi.org/10.7742/jksr.2011.5.5.261
  5. J.H. Hubbell, "Photon mass attenuation and energy-absorption coefficients from 1 keV to 20 MeV", Int. J. Radiat. Isot., Vol. 33, pp. 1269-1290, 1982. https://doi.org/10.1016/0020-708X(82)90248-4
  6. NIST: X-ray attenuation coefficients, Available in: http://physics.nist.gov/PhysRefData/XrayMassCoef/ElemTab/z13.html
  7. U.S. Dept. of HEW, Publication(FDA) 80-8035, "Regulations for the administration and enforcement of the radiation control for health and safety act of 1968", 1980.
  8. International Standard IEC 61267, "Medical diagnostic x-ray equipment radiation conditions for use in the determination of characteristics", IEC, 2005.
  9. C.M.Ma. Chair, C.W. Coffey, L.A. DeWerd, C. Liu, R. Nath, S.M. Seltzer, J.P. Seuntjens, "AAPM protocol for 40-300 kV x-ray beam dosimetry in radiotherapy and radiobiology", Med. Pysics. Vol. 28, No. 6, pp. 869-875, 2001.
  10. P. Mobit, "Comparison of the energy-response factor of LiF and Al2O3 in radiotherapy beams", Radiation Protection Dosimetry, Vol. 119, No. 1-4, pp. 497-499, 2006. https://doi.org/10.1093/rpd/nci676

Cited by

  1. CT 모의치료장치에서 발생된 X-선 빔의 유효에너지 계산식 유도 vol.15, pp.6, 2021, https://doi.org/10.7742/jksr.2021.15.6.869