• Title/Summary/Keyword: optical model potential

Search Result 99, Processing Time 0.031 seconds

A Two-Dimensional (2D) Analytical Model for the Potential Distribution and Threshold Voltage of Short-Channel Ion-Implanted GaAs MESFETs under Dark and Illuminated Conditions

  • Tripathi, Shweta;Jit, S.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.11 no.1
    • /
    • pp.40-50
    • /
    • 2011
  • A two-dimensional (2D) analytical model for the potential distribution and threshold voltage of short-channel ion-implanted GaAs MESFETs operating in the sub-threshold regime has been presented. A double-integrable Gaussian-like function has been assumed as the doping distribution profile in the vertical direction of the channel. The Schottky gate has been assumed to be semi-transparent through which optical radiation is coupled into the device. The 2D potential distribution in the channel of the short-channel device has been obtained by solving the 2D Poisson's equation by using suitable boundary conditions. The effects of excess carrier generation due to the incident optical radiation in channel region have been included in the Poisson's equation to study the optical effects on the device. The potential function has been utilized to model the threshold voltage of the device under dark and illuminated conditions. The proposed model has been verified by comparing the theoretically predicted results with simulated data obtained by using the commercially available $ATLAS^{TM}$ 2D device simulator.

Bridge-edges Mining in Complex Power Optical Cable Network based on Minimum Connected Chain Attenuation Topological Potential

  • Jiang, Wanchang;Liu, Yanhui;Wang, Shengda;Guo, Jian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.3
    • /
    • pp.1030-1050
    • /
    • 2021
  • The edges with "bridge characteristic" play the role of connecting the communication between regions in power optical cable network. To solve the problem of mining edges with "bridge characteristic" in provincial power optical cable network, the complex power optical cable network model is constructed. Firstly, to measure the generated potential energy of all nodes in n-level neighborhood local structure for one edge, the n-level neighborhood local structure topological potential is designed. And the minimum connected chain attenuation is designed to measure the attenuation degree caused by substituted edges. On the basis of that, the minimum connected chain attenuation topological potential based measurement is designed. By using the designed measurement, a bridge-edges mining algorithm is proposed to mine edges with "bridge characteristic". The experiments are conducted on the physical topology of the power optical cable network in Jilin Province. Compared with that of other three typical methods, the network efficiency and connectivity of the proposed method are decreased by 3.58% and 28.79% on average respectively. And the proposed method can not only mine optical cable connection with typical "bridge characteristic" but also can mine optical cables without obvious characteristics of city or voltage, but it have "bridge characteristic" in the topology structure.

Neutron Cross Section Evaluation on Dy Isotopes

  • Lee, Y. D.;J. H. Chang
    • Nuclear Engineering and Technology
    • /
    • v.34 no.2
    • /
    • pp.154-164
    • /
    • 2002
  • Neutron cross section data on Dy-160, Dy-161, Dy-162, Dy-163 and Dy-164 were calculated and evaluated in the energy range of 1 keV to 20 MeV using a spherical optical model, statistical model and pre-equilibrium model. The energy dependent optical model potential parameters were obtained based on the recent experimental data. The width fluctuation correction in Hauser-Feshbach particle decay and the quantum mechanical approach in pre-equilibrium analysis were introduced and gave a better cross section calculation in EMPIRE-II. The total, elastic scattering and threshold reaction cross sections were evaluated and compared with the evaluated files. The model calculated (n, tot), (n, ${\gamma}$) and (n, p) cross sections were in good agreement with the experimental data in the measured energy range. The results will be applied to ENDF/B-VI for data improvement.

Local Structure Invariant Potential for InxGa1-xAs Semiconductor Alloys

  • Sim, Eun-Ji;Han, Min-Woo;Beckers, Joost;De Leeuw, Simon
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.4
    • /
    • pp.857-862
    • /
    • 2009
  • We model lattice-mismatched group III-V semiconductor $In_{x}Ga_{1-x}$ alloys with the three-parameter anharmonic Kirkwood-Keating potential, which includes realistic distortion effect by introducing anharmonicity. Although the potential parameters were determined based on optical properties of the binary parent alloys InAs and GaAs, simulated dielectric functions, reflectance, and Raman spectra of alloys agree excellently with experimental data for any arbitrary atomic composition. For a wide range of atomic composition, InAs- and GaAs-bond retain their respective properties of binary parent crystals despite lattice and charge mismatch. It implies that use of the anharmonic Kirkwood-Keating potential may provide an optimal model system to investigate diverse and unique optical properties of quantum dot heterostructures by circumventing potential parameter searches for particular local structures.

Three-dimensional Spatiotemporal Accessible Solitons in a PT-symmetric Potential

  • Zhong, Wei-Ping;Belic, Milivoj R.;Huang, Tingwen
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.4
    • /
    • pp.425-431
    • /
    • 2012
  • Utilizing the three-dimensional Snyder-Mitchell model with a PT-symmetric potential, we study the influence of PT symmetry on beam propagation in strongly nonlocal nonlinear media. The complex Coulomb potential is used as the PT-symmetric potential. A localized spatiotemporal accessible soliton solution of the model is obtained. Specific values of the modulation depth for different soliton parameters are discussed. Our results reveal that in these media the localized solitons can exist in various shapes, such as single-layer and multi-layer disk-shaped structures, as well as vortex-ring and necklace patterns.

Alternative Potentials Analyzing the Scattering Cross Sections of 7,9,10,11,12,14Be Isotopes from a 12C target: Proximity Potentials

  • Aygun, M.
    • Journal of the Korean Physical Society
    • /
    • v.73 no.9
    • /
    • pp.1255-1262
    • /
    • 2018
  • In this paper, alternative potentials to explain the scattering cross sections of $^{7,9,10,11,12,14}Be$ isotopes by a $^{12}C$ target nucleus at different energies are researched. For this purpose, fourteen different proximity potentials, such as Proximity 1966, Proximity 1976, Proximity 1977, Proximity 1979, Proximity 1984, Proximity 1988, Proximity 1995, Broglia and Winther 1991, Aage Winther, Bass 1973, Bass 1977, Bass 1980, Christensen and Winther 1976, and $Ng{\hat{o}}$ 1980, are used to produce the real potential within the optical model. The imaginary potential is formed by using the Woods-Saxon potential. The theoretical results are compared with both experimental data and data reported in the literature. The results are in good agreement with the data. The proximity potentials are observed to play a significant role in obtaining the scattering cross sections of $^{7,9,10,11,12,14}Be$ isotopes.

Dirac Phenomenological Analyses of 1.047-GeV Proton Inelastic Scatterings from 62Ni and 64Ni

  • Shim, Sugie
    • Journal of the Korean Physical Society
    • /
    • v.73 no.11
    • /
    • pp.1631-1636
    • /
    • 2018
  • Unpolarized 1.047-GeV proton inelastic scatterings from the Ni isotopes $^{62}Ni$ and $^{64}Ni$ are analyzed phenomenologically employing an optical potential model and the first-order collective model in the relativistic Dirac coupled channel formalism. The Dirac equations are reduced to $Schr{\ddot{o}}dinger-like$ second-order differential equations, and the effective central and spin-orbit optical potentials are analyzed by considering the mass-number dependence. The multistep excitation via the $2^+$ state is found to be important for the $4^+$ state excitation in the ground state rotational band for proton inelastic scatterings from the Ni isotopes. The calculated deformation parameters for the $2^+$ and the $4^+$ states of the ground state rotational band and for the first $3^-$ state are found to agree pretty well with those obtained from nonrelativistic calculations.

Optical BGP Routing Convergence in Lightpath Failure of Optical Internet

  • Jeong, Sang-Jin;Youn, Chan-Hyun;Kang, Min-Ho;Min, Kyoung-Seon;Hong, Hyun-Ha;Kim, Hae-Geun
    • ETRI Journal
    • /
    • v.24 no.2
    • /
    • pp.97-108
    • /
    • 2002
  • Optical Border Gateway Protocol (OBGP) is an extension to BGP for Optical Cross Connects (OXCs) to automatically setup multiple direct optical lightpaths between many different autonomous domains. With OBGP, the routing component of a network may be distributed to the edge of the network while the packet classification and forwarding is done in the core. However, it is necessary to analyze the stable convergence functions of OBGP in case of lightpath failures. In this paper, we first describe the architecture of the OBGP model and analyze the potential problems of OBGP, e.g., virtual BGP router convergence behavior in the presence of lightpath failure. We then propose an OBGP convergence model derived from an inter-AS (Autonomous System) relationship. The evaluation results show that the proposed model can be used for a stable OBGP routing policy and OBGP routing convergence under lightpath failures of the optical Internet.

  • PDF

An Improved Calculation Model for Analysis of [111] InGaAs/GaAs Strained Piezoelectric Superlattices

  • Kim, Byoung-Whi;Yoo, Jae-Hoon;Kim, Soo-Hyung
    • ETRI Journal
    • /
    • v.21 no.4
    • /
    • pp.65-82
    • /
    • 1999
  • We present a calculation model for an improved quantitative theoretical analysis of electronic and optical properties of strained-piezoelectric[111] InGaAs/GaAs superlattices (SLs). The model includes a full band-coupling between the four important energy bands: conduction, heavy, light, and spin split-off valence bands. The interactions between these and higher lying bands are treated by the k ${\cdot}$ p perturbation method. The model takes into account the differences in the band and strain parameters of constituent materials of the heterostructures by transforming it into an SL potential in the larger band-gap material region. It self-consistently solves an $8{\times}8$ effective-mass $Schr{\ddot{o}}dinger$ equation and the Hartree and exchange-correlation potential equations through the variational procedure proposed recently by the present first author and applied to calculate optical matrix elements and spontaneous emission rates. The model can be used to further elucidate the recent theoretical results and experimental observations of interesting properties of this type of quantum well and SL structures, including screening of piezoelectric field and its resultant optical nonlinearities for use in optoelectronic devices.

  • PDF

Theory of Optical Second Harmonic Generation from Al Metal Surfaces

  • Lee, Kyungmee;Lee, Hyungrak;Choi, Seongsoo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.199.1-199.1
    • /
    • 2014
  • In nonlinear optics, the properties of nonlinear optical responses such as polarization and nonlinear analysis of the nonlinear surfaces were investigated using the jellium model by optical second harmonic generation. The nonlinear response of the Al metal surfaces were calculated using TDLDA. Band structure, lattice constant and bulk modulus of the Al metal were investigated. Effective potential and electron density were compared by changing different.

  • PDF