DOI QR코드

DOI QR Code

Alternative Potentials Analyzing the Scattering Cross Sections of 7,9,10,11,12,14Be Isotopes from a 12C target: Proximity Potentials

  • Aygun, M. (Department of Physics, Bitlis Eren University)
  • Received : 2018.05.02
  • Accepted : 2018.06.18
  • Published : 2018.11.15

Abstract

In this paper, alternative potentials to explain the scattering cross sections of $^{7,9,10,11,12,14}Be$ isotopes by a $^{12}C$ target nucleus at different energies are researched. For this purpose, fourteen different proximity potentials, such as Proximity 1966, Proximity 1976, Proximity 1977, Proximity 1979, Proximity 1984, Proximity 1988, Proximity 1995, Broglia and Winther 1991, Aage Winther, Bass 1973, Bass 1977, Bass 1980, Christensen and Winther 1976, and $Ng{\hat{o}}$ 1980, are used to produce the real potential within the optical model. The imaginary potential is formed by using the Woods-Saxon potential. The theoretical results are compared with both experimental data and data reported in the literature. The results are in good agreement with the data. The proximity potentials are observed to play a significant role in obtaining the scattering cross sections of $^{7,9,10,11,12,14}Be$ isotopes.

Keywords

References

  1. M. Aygun, O. Bayrak and Z. Aygun, Quant. Phys. Lett. 6, 149 (2017).
  2. C. Signorini et al., Phys. Rev. C 61, 061603(R) (2000). https://doi.org/10.1103/PhysRevC.61.061603
  3. M. Aygun and Z. Aygun, Nucl. Sci. Tech. 86, 1 (2017).
  4. V. K. Lukyanov, D. N. Kadrev, E. V. Zemlyanaya, K. Spasova, K. V. Lukyanov, A. N. Antonov and M. K. Gaidarov, Phys. Rev. C 91, 034606 (2015). https://doi.org/10.1103/PhysRevC.91.034606
  5. R. Bhattacharya and K. Krishan, Phys. Rev. C 56, 1 (1997). https://doi.org/10.1103/PhysRevB.56.1
  6. M. Aygun, Rev. Mex. Fis. 62, 336 (2016).
  7. M. Aygun, GU J. Sci. 29, 263 (2016).
  8. P. Wastyn, H. Genz, M. Mutterer, A. Richter, G. Schrieder, J. C. Van Staden and J. P. Theobald, Nucl. Phys. A 320, 433 (1979). https://doi.org/10.1016/0375-9474(79)90200-8
  9. H. Delagrange, L. C. Vaz and J. M. Alexander, Phys. Rev. C 20, 1731 (1979).
  10. L. C. Vaz, J. M. Alexander and E. H. Auerbach, Phys. Rev. C 18, 820 (1978).
  11. G. R. Satchler, Nucl. Phys. A 279, 493 (1977). https://doi.org/10.1016/0375-9474(77)90582-6
  12. M. Lozano and G. Madurga, Nucl. Phys. A 334, 349 (1980). https://doi.org/10.1016/0375-9474(80)90074-3
  13. Y. Shi and W. J. Swiatecki, Nucl. Phys. A 438, 450 (1985). https://doi.org/10.1016/0375-9474(85)90385-9
  14. I. Dutt and R. K. Puri, Phys. Rev. C 81, 064608 (2010). https://doi.org/10.1103/PhysRevC.81.064608
  15. Y. J. Yao, G. L. Zhang, W. W. Qu and J. Q. Qian, Eur. Phys. J. A 51, 122 (2015). https://doi.org/10.1140/epja/i2015-15122-0
  16. G. L. Zhang, Y. J. Yao, M. F. Guo, M. Pan, G. X. Zhang and X. X. Liu, Nucl. Phys. A 951, 86 (2016). https://doi.org/10.1016/j.nuclphysa.2016.03.039
  17. K. P. Santhosh and I. Sukumaran, Eur. Phys. J. A 53, 136 (2017). https://doi.org/10.1140/epja/i2017-12309-3
  18. K. P. Santhosh and I. Sukumaran, Eur. Phys. J. Plus 132, 431 (2017). https://doi.org/10.1140/epjp/i2017-11743-x
  19. J. Blocki, J. Randrup, W. J. Swiatecki and C. F. Tsang, Ann. Phys. (NY) 105, 427 (1977). https://doi.org/10.1016/0003-4916(77)90249-4
  20. W. D. Myers and W. J. Swiatecki, Nucl. Phys. 81, 1 (1966). https://doi.org/10.1016/0029-5582(66)90639-0
  21. P. Moller and J. R. Nix, Nucl. Phys. A 272, 502 (1976). https://doi.org/10.1016/0375-9474(76)90345-6
  22. H. J. Krappe, J. R. Nix and A. J. Sierk, Phys. Rev. C 20, 992 (1979). https://doi.org/10.1103/PhysRevC.20.992
  23. G. Royer and B. Remaud, J. Phys. G: Nucl. Part. Phys. 10, 1541 (1984). https://doi.org/10.1088/0305-4616/10/11/010
  24. W. Reisdorf, J. Phys. G: Nucl. Part. Phys. 20, 1297 (1994). https://doi.org/10.1088/0954-3899/20/9/004
  25. P. Moller, J. R. Nix, W. D. Myers and W. J. Swiatecki, At. Data Nucl. Data Tables 59, 185 (1995). https://doi.org/10.1006/adnd.1995.1002
  26. A. Winther, Nucl. Phys. A 594, 203 (1995). https://doi.org/10.1016/0375-9474(95)00374-A
  27. R. Bass, Phys. Lett. B 47, 139 (1973). https://doi.org/10.1016/0370-2693(73)90590-X
  28. R. Bass, Nucl. Phys. A 231, 45 (1974). https://doi.org/10.1016/0375-9474(74)90292-9
  29. R. Bass, Phys. Rev. Lett. 39, 265 (1977). https://doi.org/10.1103/PhysRevLett.39.265
  30. P. R. Christensen and A. Winther, Phys. Lett. B 65, 19 (1976). https://doi.org/10.1016/0370-2693(76)90524-4
  31. H. Ngo and C. Ngo, Nucl. Phys. A 348, 140 (1980). https://doi.org/10.1016/0375-9474(80)90550-3
  32. G. R. Satchler, Direct Nuclear Reactions (Oxford University Press, Oxford, 1983).
  33. I. J. Thompson, Computer Phys. Rep. 7, 167 (1988). https://doi.org/10.1016/0167-7977(88)90005-6
  34. I. Dutt and R. K. Puri, Phys. Rev. C 81, 064609 (2010). https://doi.org/10.1103/PhysRevC.81.064609
  35. K. P. Santhosh and I. Sukumaran, Eur. Phys. J. A 53, 246 (2017). https://doi.org/10.1140/epja/i2017-12446-7
  36. M. Aygun, O. Kocadag and Y. Sahin, Rev. Mex. Fis. 61, 414 (2015).
  37. M. Aygun, Chinese J. Phys. 53, 080301 (2015).
  38. M. Aygun, Commun. Theor. Phys. 66, 531 (2016). https://doi.org/10.1088/0253-6102/66/5/531
  39. M. Aygun, Chinese J. Phys. 55, 2559 (2017). https://doi.org/10.1016/j.cjph.2017.09.016
  40. T. Yamagata et al., Phys. Rev. C 39, 873 (1989).
  41. Z. H. Li et al., Phys. Rev. C 87, 017601 (2013). https://doi.org/10.1103/PhysRevC.87.017601
  42. J. C. Zamora et al., Phys. Rev. C 84, 034611 (2011). https://doi.org/10.1103/PhysRevC.84.034611
  43. V. Lapoux et al., Phys. Lett. B 658, 198 (2008). https://doi.org/10.1016/j.physletb.2007.11.005
  44. M. Zahar et al., Phys. Rev. C 49, 1540 (1994).
  45. M. C. Mermaz, Phys. Rev. C 50, 2620 (1994). https://doi.org/10.1103/PhysRevC.50.2620

Cited by

  1. Effects of Proximity Potentials on the Cross-Sections of 6,8He + 65Cu Halo Fusion Reactions vol.64, pp.5, 2018, https://doi.org/10.15407/ujpe64.5.363
  2. Microscopic analysis of quasielastic scattering and breakup reactions of the neutron-rich nuclei $ \tensor_{}^{12,14}{\mathrm{Be}}{_{Be}}$ vol.100, pp.3, 2019, https://doi.org/10.1103/physrevc.100.034602
  3. A comprehensive theoretical analysis of $ ^{22}$ Ne nucleus by using different density distributions, different nuclear potentials and different cluster approach vol.29, pp.1, 2018, https://doi.org/10.1142/s021830131950112x
  4. Comprehensive Research of 10C Nucleus Using Different Theoretical Approaches vol.66, pp.8, 2018, https://doi.org/10.15407/ujpe66.8.653