• Title/Summary/Keyword: operator space

Search Result 979, Processing Time 0.026 seconds

NOTE ON REAL HYPERSURFACES OF NONFLAT COMPLEX SPACE FORMS IN TERMS OF THE STRUCTURE JACOBI OPERATOR AND RICCI TENSOR

  • KIM, NAM-GIL;LI, CHUNJI;KI, U-HANG
    • Honam Mathematical Journal
    • /
    • v.27 no.3
    • /
    • pp.487-504
    • /
    • 2005
  • Let M be a real hypersurface with almost contact metric structure (${\phi}$, ${\xi}$, ${\eta}$, g) in a nonflat complex space form $M_n(c)$. We denote by A and S be the shape operator and the Ricci tensor of M respectively. In the present paper we investigate real hypersurfaces with $g(SA{\xi},\;A{\xi})=const$. of $M_n(c)$ whose structure Jacobi operator $R_{\xi}$ commute with both ${\phi}$ and S. We give a characterization of Hopf hypersurfaces of $M_n(c)$.

  • PDF

SEMI-INVARIANT SUBMANIFOLDS OF CODIMENSION 3 IN A COMPLEX SPACE FORM IN TERMS OF THE STRUCTURE JACOBI OPERATOR

  • Ki, U-Hang;Kurihara, Hiroyuki
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.1
    • /
    • pp.229-257
    • /
    • 2022
  • Let M be a semi-invariant submanifold of codimension 3 with almost contact metric structure (𝜙, 𝜉, 𝜂, g) in a complex space form Mn+1(c), c ≠ 0. We denote by A and R𝜉 the shape operator in the direction of distinguished normal vector field and the structure Jacobi operator with respect to the structure vector 𝜉, respectively. Suppose that the third fundamental form t satisfies dt(X, Y) = 2𝜃g(𝜙X, Y) for a scalar 𝜃(< 2c) and any vector fields X and Y on M. In this paper, we prove that if it satisfies R𝜉A = AR𝜉 and at the same time ∇𝜉R𝜉 = 0 on M, then M is a Hopf hypersurface of type (A) provided that the scalar curvature s of M holds s - 2(n - 1)c ≤ 0.

AN IDENTITY ON STANDARD OPERATOR ALGEBRA

  • SHUJAT, FAIZA
    • Journal of applied mathematics & informatics
    • /
    • v.40 no.5_6
    • /
    • pp.1129-1135
    • /
    • 2022
  • The purpose of this research is to find an extension of the renowned Chernoff theorem on standard operator algebra. Infact, we prove the following result: Let H be a real (or complex) Banach space and 𝓛(H) be the algebra of bounded linear operators on H. Let 𝓐(H) ⊂ 𝓛(H) be a standard operator algebra. Suppose that D : 𝓐(H) → 𝓛(H) is a linear mapping satisfying the relation D(AnBn) = D(An)Bn + AnD(Bn) for all A, B ∈ 𝓐(H). Then D is a linear derivation on 𝓐(H). In particular, D is continuous. We also present the limitations on such identity by an example.

Impedance Parameter Update Method for Dual-arm Manipulator based on Operator's Muscle Activation (조작자 근육 활성도 기반 양팔 로봇의 임피던스 제어 파라미터 갱신 방법)

  • Baek, Chanryul;Cha, Gwangyeol;Kim, Junsik;Choi, Youngjin
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.3
    • /
    • pp.347-352
    • /
    • 2022
  • The paper presents how to update impedance control parameters for dual-arm manipulators using EMG signals and motions of the operator. Since the hand motions of the dual-arm are modeled to be the mass-spring-damper system in this paper, the impedance parameter update method is an important issue to reflect the operator's force. However, task space inertia to be used as the mass parameter goes to infinity if the manipulator approaches a kinematic singularity. To alleviate this issue, the impedance (stiffness and damping) parameters are divided with a diagonal element of the task space inertia. Also, the stiffness and damping matrices are updated using the normalized EMG signals captured from the operator's forearm. Through this process, the motion of the dual-arm manipulator is more stabilized even though it approaches the kinematic singularity.

STRUCTURE JACOBI OPERATOR OF SEMI-INVARINAT SUBMANIFOLDS IN COMPLEX SPACE FORMS

  • KI, U-HANG;KIM, SOO JIN
    • East Asian mathematical journal
    • /
    • v.36 no.3
    • /
    • pp.389-415
    • /
    • 2020
  • Let M be a semi-invariant submanifold of codimension 3 with almost contact metric structure (𝜙, ξ, η, g) in a complex space form Mn+1(c), c ≠ 0. We denote by Rξ and R'X be the structure Jacobi operator with respect to the structure vector ξ and be R'X = (∇XR)(·, X)X for any unit vector field X on M, respectively. Suppose that the third fundamental form t satisfies dt(X, Y) = 2𝜃g(𝜙X, Y) for a scalar 𝜃(≠ 2c) and any vector fields X and Y on M. In this paper, we prove that if it satisfies Rξ𝜙 = 𝜙Rξ and at the same time R'ξ = 0, then M is a Hopf real hypersurfaces of type (A), provided that the scalar curvature ${\bar{r}}$ of M holds ${\bar{r}}-2(n-1)c{\leq}0$.

SUBSTITUTION OPERATORS IN THE SPACES OF FUNCTIONS OF BOUNDED VARIATION BV2α(I)

  • Aziz, Wadie;Guerrero, Jose Atilio;Merentes, Nelson
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.2
    • /
    • pp.649-659
    • /
    • 2015
  • The space $BV^2_{\alpha}(I)$ of all the real functions defined on interval $I=[a,b]{\subset}\mathbb{R}$, which are of bounded second ${\alpha}$-variation (in the sense De la Vall$\acute{e}$ Poussin) on I forms a Banach space. In this space we define an operator of substitution H generated by a function $h:I{\times}\mathbb{R}{\rightarrow}\mathbb{R}$, and prove, in particular, that if H maps $BV^2_{\alpha}(I)$ into itself and is globally Lipschitz or uniformly continuous, then h is an affine function with respect to the second variable.

Linear Digital Decentralized Control System for Smart Space (스마트 스페이스 구축을 위한 선형 디지털 분산 제어 시스템 개발)

  • Kim Do Wan;Joo Young Hoon;Park Jin Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.1
    • /
    • pp.36-41
    • /
    • 2005
  • The smart space is composed of the wire and/or wireless network, multi-sensor-based environment, and many various controllers. For the smart space, this paper presents a new design method of multirate digital decentralized controller using the digital redesign technique. In specific, the proposed method is based on the delta-operator and the multirate sampling and takes the form of the LMIs. To shows the feasibility of the suggested method, the computer simulations for HVAC system are provided.

GENERALIZED CONDITIONS FOR THE CONVERGENCE OF INEXACT NEWTON-LIKE METHODS ON BANACH SPACES WITH A CONVERGENCE STRUCTURE AND APPLICATIONS

  • Argyros, Ioannis-K.
    • Journal of applied mathematics & informatics
    • /
    • v.5 no.2
    • /
    • pp.433-448
    • /
    • 1998
  • In this study we use inexact Newton-like methods to find solutions of nonlinear operator equations on Banach spaces with a convergence structure. Our technique involves the introduction of a generalized norm as an operator from a linear space into a par-tially ordered Banach space. In this way the metric properties of the examined problem can be analyzed more precisely. Moreover this approach allows us to derive from the same theorem on the one hand semi-local results of kantorovich-type and on the other hand 2global results based on monotonicity considerations. By imposing very general Lipschitz-like conditions on the operators involved on the other hand by choosing our operators appropriately we can find sharper error bounds on the distances involved than before. Furthermore we show that special cases of our results reduce to the corresponding ones already in the literature. Finally our results are used to solve integral equations that cannot be solved with existing methods.

THE STRUCTURE JACOBI OPERATOR ON REAL HYPERSURFACES IN A NONFLAT COMPLEX SPACE FORM

  • KI, U-HANG;KIM, SOO-JIN;LEE, SEONG-BAEK
    • Bulletin of the Korean Mathematical Society
    • /
    • v.42 no.2
    • /
    • pp.337-358
    • /
    • 2005
  • Let M be a real hypersurface with almost contact metric structure $(\phi,\;\xi,\;\eta,\;g)$ in a nonflat complex space form $M_n(c)$. In this paper, we prove that if the structure Jacobi operator $R_\xi$ commutes with both the structure tensor $\phi$ and the Ricc tensor S, then M is a Hopf hypersurface in $M_n(c)$ provided that the mean curvature of M is constant or $g(S\xi,\;\xi)$ is constant.

Space Deformation of Parametric Surface Based on Extension Function

  • Wang, Xiaoping;Ye, Zhenglin;Meng, Yaqin;Li, Hongda
    • International Journal of CAD/CAM
    • /
    • v.1 no.1
    • /
    • pp.23-32
    • /
    • 2002
  • In this paper, a new technique of space deformation for parametric surfaces with so-called extension function (EF) is presented. Firstly, a special extension function is introduced. Then an operator matrix is constructed on the basis of EF. Finally the deformation of a surface is achieved through multiplying the equation of the surface by an operator matrix or adding the multiplication of some vector and the operator matrix to the equation. Interactively modifying control parameters, ideal deformation effect can be got. The implementation shows that the method is simple, intuitive and easy to control. It can be used in such fields as geometric modeling and computer animation.