• Title/Summary/Keyword: operator inequalities

검색결과 131건 처리시간 0.021초

HORADAM POLYNOMIALS FOR A NEW SUBCLASS OF SAKAGUCHI-TYPE BI-UNIVALENT FUNCTIONS DEFINED BY (p, q)-DERIVATIVE OPERATOR

  • Vanithakumari Balasubramaniam;Saravanan Gunasekar;Baskaran Sudharsanan;Sibel Yalcin
    • 대한수학회논문집
    • /
    • 제39권2호
    • /
    • pp.461-470
    • /
    • 2024
  • In this paper, a new subclass, 𝒮𝒞𝜇,p,q𝜎 (r, s; x), of Sakaguchitype analytic bi-univalent functions defined by (p, q)-derivative operator using Horadam polynomials is constructed and investigated. The initial coefficient bounds for |a2| and |a3| are obtained. Fekete-Szegö inequalities for the class are found. Finally, we give some corollaries.

CONVERGENCE AND STABILITY OF THREE-STEP ITERATIVE SCHEME WITH ERRORS FOR COMPLETELY GENERALIZED STRONGLY NONLINEAR QUASIVARIATIONAL INEQUALITIES

  • ZHANG FENGRONG;GAO HAIYAN;LIU ZEQING;KANG SHIN MIN
    • Journal of applied mathematics & informatics
    • /
    • 제20권1_2호
    • /
    • pp.465-478
    • /
    • 2006
  • In this paper, we introduce a new class of completely generalized strongly nonlinear quasivariational inequalities and establish its equivalence with a class of fixed point problems by using the resolvent operator technique. Utilizing this equivalence, we develop a three-step iterative scheme with errors, obtain a few existence theorems of solutions for the completely generalized non-linear strongly quasivariational inequality involving relaxed monotone, relaxed Lipschitz, strongly monotone and generalized pseudocontractive mappings and prove some convergence and stability results of the sequence generated by the three-step iterative scheme with errors. Our results include several previously known results as special cases.

유전알고리즘에서 선형제약식을 다루는 방법 (A Handling Method of Linear Constraints for the Genetic Algorithm)

  • 성기석
    • 한국경영과학회지
    • /
    • 제37권4호
    • /
    • pp.67-72
    • /
    • 2012
  • In this paper a new method of handling linear constraints for the genetic algorithm is suggested. The method is designed to maintain the feasibility of offsprings during the evolution process of the genetic algorithm. In the genetic algorithm, the chromosomes are coded as the vectors in the real vector space constrained by the linear constraints. A method of handling the linear constraints already exists in which all the constraints of equalities are eliminated so that only the constraints of inequalities are considered in the process of the genetic algorithm. In this paper a new method is presented in which all the constraints of inequalities are eliminated so that only the constraints of equalities are considered. Several genetic operators such as arithmetic crossover, simplex crossover, simple crossover and random vector mutation are designed so that the resulting offspring vectors maintain the feasibility subject to the linear constraints in the framework of the new handling method.

New Two-Weight Imbedding Inequalities for $\mathcal{A}$-Harmonic Tensors

  • Gao, Hongya;Chen, Yanmin;Chu, Yuming
    • Kyungpook Mathematical Journal
    • /
    • 제47권1호
    • /
    • pp.105-118
    • /
    • 2007
  • In this paper, we first define a new kind of two-weight-$A_r^{{\lambda}_3}({\lambda}_1,{\lambda}_2,{\Omega})$-weight, and then prove the imbedding inequalities for $\mathcal{A}$-harmonic tensors. These results can be used to study the weighted norms of the homotopy operator T from the Banach space $L^p(D,{\bigwedge}^l)$ to the Sobolev space $W^{1,p}(D,{\bigwedge}^{l-1})$, $l=1,2,{\cdots},n$, and to establish the basic weighted $L^p$-estimates for $\mathcal{A}$-harmonic tensors.

  • PDF

On Certain Novel Subclasses of Analytic and Univalent Functions

  • Irmak, Huseyin;Joshi, Santosh Bhaurao;Raina, Ravinder Krishen
    • Kyungpook Mathematical Journal
    • /
    • 제46권4호
    • /
    • pp.543-552
    • /
    • 2006
  • The purpose of the present paper is to introduce two novel subclasses $\mathcal{T}_{\mu}(n,{\lambda},{\alpha})$ and $\mathcal{H}_{\mu}(n,{\lambda},{\alpha};{\kappa})$ of analytic and univalent functions with negative coefficients, involving Ruscheweyh derivative operator. The various results investigated in this paper include coefficient estimates, distortion inequalities, radii of close-to-convexity, starlikenes, and convexity for the functions belonging to the class $\mathcal{T}_{\mu}(n,{\lambda},{\alpha})$. These results are then appropriately applied to derive similar geometrical properties for the other class $\mathcal{H}_{\mu}(n,{\lambda},{\alpha};{\kappa})$ of analytic and univalent functions. Relevant connections of these results with those in several earlier investigations are briefly indicated.

  • PDF

ESTIMATES FOR EIGENVALUES OF NEUMANN AND NAVIER PROBLEM

  • Deng, Yanlin;Du, Feng;Hou, Lanbao
    • 대한수학회보
    • /
    • 제58권6호
    • /
    • pp.1315-1325
    • /
    • 2021
  • In this paper, we firstly prove some general inequalities for the Neumann eigenvalues for domains contained in a Euclidean n-space ℝn. Using the general inequalities, we can derive some new Neumann eigenvalues estimates which include an upper bound for the (k + 1)th eigenvalue and a new estimate for the gap of the consecutive eigenvalues. Moreover, we give sharp lower bound for the first eigenvalue of two kinds of eigenvalue problems of the biharmonic operator with Navier boundary condition on compact Riemannian manifolds with boundary and positive Ricci curvature.

ACCELERATED STRONGLY CONVERGENT EXTRAGRADIENT ALGORITHMS TO SOLVE VARIATIONAL INEQUALITIES AND FIXED POINT PROBLEMS IN REAL HILBERT SPACES

  • Nopparat Wairojjana;Nattawut Pholasa;Chainarong Khunpanuk;Nuttapol Pakkaranang
    • Nonlinear Functional Analysis and Applications
    • /
    • 제29권2호
    • /
    • pp.307-332
    • /
    • 2024
  • Two inertial extragradient-type algorithms are introduced for solving convex pseudomonotone variational inequalities with fixed point problems, where the associated mapping for the fixed point is a 𝜌-demicontractive mapping. The algorithm employs variable step sizes that are updated at each iteration, based on certain previous iterates. One notable advantage of these algorithms is their ability to operate without prior knowledge of Lipschitz-type constants and without necessitating any line search procedures. The iterative sequence constructed demonstrates strong convergence to the common solution of the variational inequality and fixed point problem under standard assumptions. In-depth numerical applications are conducted to illustrate theoretical findings and to compare the proposed algorithms with existing approaches.

ON A CLASS OF q-BI-UNIVALENT FUNCTIONS OF COMPLEX ORDER RELATED TO SHELL-LIKE CURVES CONNECTED WITH THE FIBONACCI NUMBERS

  • Ahuja, Om P.;Cetinkaya, Asena;Bohra, Nisha
    • 호남수학학술지
    • /
    • 제42권2호
    • /
    • pp.319-330
    • /
    • 2020
  • We introduce a new subclass of q-bi-univalent functions of complex order related to shell-like curves connected with the Fibonacci numbers. We obtain the coefficient estimates and Fekete-Szegö inequalities for the functions belonging to this class. Relevant connections with various other known classes have been illustrated.

LOCAL CONVERGENCE OF NEWTON'S METHOD FOR PERTURBED GENERALIZED EQUATIONS

  • Argyros Ioannis K.
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제13권4호
    • /
    • pp.261-267
    • /
    • 2006
  • A local convergence analysis of Newton's method for perturbed generalized equations is provided in a Banach space setting. Using center Lipschitzian conditions which are actually needed instead of Lipschitzian hypotheses on the $Fr\'{e}chet$-derivative of the operator involved and more precise estimates under less computational cost we provide a finer convergence analysis of Newton's method than before [5]-[7].

  • PDF