Abstract
The purpose of the present paper is to introduce two novel subclasses $\mathcal{T}_{\mu}(n,{\lambda},{\alpha})$ and $\mathcal{H}_{\mu}(n,{\lambda},{\alpha};{\kappa})$ of analytic and univalent functions with negative coefficients, involving Ruscheweyh derivative operator. The various results investigated in this paper include coefficient estimates, distortion inequalities, radii of close-to-convexity, starlikenes, and convexity for the functions belonging to the class $\mathcal{T}_{\mu}(n,{\lambda},{\alpha})$. These results are then appropriately applied to derive similar geometrical properties for the other class $\mathcal{H}_{\mu}(n,{\lambda},{\alpha};{\kappa})$ of analytic and univalent functions. Relevant connections of these results with those in several earlier investigations are briefly indicated.