• 제목/요약/키워드: operator ideal

검색결과 39건 처리시간 0.021초

THE ALTERNATIVE DUNFORD-PETTIS PROPERTY IN SUBSPACES OF OPERATOR IDEALS

  • Moshtaghioun, S. Mohammad
    • 대한수학회보
    • /
    • 제47권4호
    • /
    • pp.743-750
    • /
    • 2010
  • For several Banach spaces X and Y and operator ideal $\cal{U}$, if $\cal{U}$(X, Y) denotes the component of operator ideal $\cal{U}$; according to Freedman's definitions, it is shown that a necessary and sufficient condition for a closed subspace $\cal{M}$ of $\cal{U}$(X, Y) to have the alternative Dunford-Pettis property is that all evaluation operators $\phi_x\;:\;\cal{M}\;{\rightarrow}\;Y$ and $\psi_{y^*}\;:\;\cal{M}\;{\rightarrow}\;X^*$ are DP1 operators, where $\phi_x(T)\;=\;Tx$ and $\psi_{y^*}(T)\;=\;T^*y^*$ for $x\;{\in}\;X$, $y^*\;{\in}\;Y^*$ and $T\;{\in}\;\cal{M}$.

Remarks on M-ideals of compact operators

  • Cho, Chong-Man
    • 대한수학회보
    • /
    • 제33권3호
    • /
    • pp.445-453
    • /
    • 1996
  • A closed subspace J of a Banach space X is called an M-ideal in X if the annihilator $J^\perp$ of J is an L-summand of $X^*$. That is, there exists a closed subspace J' of $X^*$ such that $X^* = J^\perp \oplus J'$ and $\left\$\mid$ p + q \right\$\mid$ = \left\$\mid$ p \right\$\mid$ + \left\$\mid$ q \right\$\mid$$ wherever $p \in J^\perp and q \in J'$.

  • PDF

On the Definition of Intuitionistic Fuzzy h-ideals of Hemirings

  • Rahman, Saifur;Saikia, Helen Kumari
    • Kyungpook Mathematical Journal
    • /
    • 제53권3호
    • /
    • pp.435-457
    • /
    • 2013
  • Using the Lukasiewicz 3-valued implication operator, the notion of an (${\alpha},{\beta}$)-intuitionistic fuzzy left (right) $h$-ideal of a hemiring is introduced, where ${\alpha},{\beta}{\in}\{{\in},q,{\in}{\wedge}q,{\in}{\vee}q\}$. We define intuitionistic fuzzy left (right) $h$-ideal with thresholds ($s,t$) of a hemiring R and investigate their various properties. We characterize intuitionistic fuzzy left (right) $h$-ideal with thresholds ($s,t$) and (${\alpha},{\beta}$)-intuitionistic fuzzy left (right) $h$-ideal of a hemiring R by its level sets. We establish that an intuitionistic fuzzy set A of a hemiring R is a (${\in},{\in}$) (or (${\in},{\in}{\vee}q$) or (${\in}{\wedge}q,{\in}$)-intuitionistic fuzzy left (right) $h$-ideal of R if and only if A is an intuitionistic fuzzy left (right) $h$-ideal with thresholds (0, 1) (or (0, 0.5) or (0.5, 1)) of R respectively. It is also shown that A is a (${\in},{\in}$) (or (${\in},{\in}{\vee}q$) or (${\in}{\wedge}q,{\in}$))-intuitionistic fuzzy left (right) $h$-ideal if and only if for any $p{\in}$ (0, 1] (or $p{\in}$ (0, 0.5] or $p{\in}$ (0.5, 1] ), $A_p$ is a fuzzy left (right) $h$-ideal. Finally, we prove that an intuitionistic fuzzy set A of a hemiring R is an intuitionistic fuzzy left (right) $h$-ideal with thresholds ($s,t$) of R if and only if for any $p{\in}(s,t]$, the cut set $A_p$ is a fuzzy left (right) $h$-ideal of R.

On M-ideal properties of certain spaces of compact operators

  • Cho, Chong-Man;Kim, Beom-Sool
    • 대한수학회논문집
    • /
    • 제11권3호
    • /
    • pp.673-680
    • /
    • 1996
  • It is proved that $K(c_0,Y)$ is an M-ideal in $L(c_0,Y)$ if Y is a closed subspace of $c_0$. And a new direct proof of the fact that $K(L_1[0,1],\ell_1)$ is not an M-ideal in $L(L_1[0,1],\ell_1)$ is given.

  • PDF

IDEALS IN THE UPPER TRIANGULAR OPERATOR ALGEBRA ALG𝓛

  • Lee, Sang Ki;Kang, Joo Ho
    • 호남수학학술지
    • /
    • 제39권1호
    • /
    • pp.93-100
    • /
    • 2017
  • Let $\mathcal{H}$ be an infinite dimensional separable Hilbert space with a fixed orthonormal base $\{e_1,e_2,{\cdots}\}$. Let $\mathcal{L}$ be the subspace lattice generated by the subspaces $\{[e_1],[e_1,e_2],[e_1,e_2,e_3],{\cdots}\}$ and let $Alg{\mathcal{L}}$ be the algebra of bounded operators which leave invariant all projections in $\mathcal{L}$. Let p and q be natural numbers($p{\leqslant}q$). Let $\mathcal{B}_{p,q}=\{T{\in}Alg\mathcal{L}{\mid}T_{(p,q)}=0\}$. Let $\mathcal{A}$ be a linear manifold in $Alg{\mathcal{L}}$ such that $\{0\}{\varsubsetneq}{\mathcal{A}}{\subset}{\mathcal{B}}_{p,q}$. If $\mathcal{A}$ is an ideal in $Alg{\mathcal{L}}$, then $T_{(i,j)}=0$, $p{\leqslant}i{\leqslant}q$ and $i{\leqslant}j{\leqslant}q$ for all T in $\mathcal{A}$.

The Structure of Maximal Ideal Space of Certain Banach Algebras of Vector-valued Functions

  • Shokri, Abbas Ali;Shokri, Ali
    • Kyungpook Mathematical Journal
    • /
    • 제54권2호
    • /
    • pp.189-195
    • /
    • 2014
  • Let X be a compact metric space, B be a unital commutative Banach algebra and ${\alpha}{\in}(0,1]$. In this paper, we first define the vector-valued (B-valued) ${\alpha}$-Lipschitz operator algebra $Lip_{\alpha}$ (X, B) and then study its structure and characterize of its maximal ideal space.

HEREDITARY PROPERTIES OF CERTAIN IDEALS OF COMPACT OPERATORS

  • Cho, Chong-Man;Lee, Eun-Joo
    • 대한수학회보
    • /
    • 제41권3호
    • /
    • pp.457-464
    • /
    • 2004
  • Let X be a Banach space and Z a closed subspace of a Banach space Y. Denote by L(X, Y) the space of all bounded linear operators from X to Y and by K(X, Y) its subspace of compact linear operators. Using Hahn-Banach extension operators corresponding to ideal projections, we prove that if either $X^{**}$ or $Y^{*}$ has the Radon-Nikodym property and K(X, Y) is an M-ideal (resp. an HB-subspace) in L(X, Y), then K(X, Z) is also an M-ideal (resp. HB-subspace) in L(X, Z). If L(X, Y) has property SU instead of being an M-ideal in L(X, Y) in the above, then K(X, Z) also has property SU in L(X, Z). If X is a Banach space such that $X^{*}$ has the metric compact approximation property with adjoint operators, then M-ideal (resp. HB-subspace) property of K(X, Y) in L(X, Y) is inherited to K(X, Z) in L(X, Z).

LIE IDEALS IN THE UPPER TRIANGULAR OPERATOR ALGEBRA ALG𝓛

  • LEE, SANG KI;KANG, JOO HO
    • Journal of applied mathematics & informatics
    • /
    • 제36권3_4호
    • /
    • pp.237-244
    • /
    • 2018
  • Let ${\mathcal{H}}$ be an infinite dimensional separable Hilbert space with a fixed orthonormal base $\{e_1,e_2,{\cdots}\}$. Let L be the subspace lattice generated by the subspaces $\{[e_1],[e_1,e_2],[e_1,e_2,e_3],{\cdots}\}$ and let $Alg{\mathcal{L}}$ be the algebra of bounded operators which leave invariant all projections in ${\mathcal{L}}$. Let p and q be natural numbers (p < q). Let ${\mathcal{A}}$ be a linear manifold in $Alg{\mathcal{L}}$ such that $T_{(p,q)}=0$ for all T in ${\mathcal{A}}$. If ${\mathcal{A}}$ is a Lie ideal, then $T_{(p,p)}=T_{(p+1,p+1)}={\cdots}=T_{(q,q)}$ and $T_{(i,j)}=0$, $p{\eqslantless}i{\eqslantless}q$ and i < $j{\eqslantless}q$ for all T in ${\mathcal{A}}$.