J. Korean Math. Soc. $\bf 57$ (2020), No. 4, pp. 1053–1057

https://doi.org/10.4134/JKMS.j190751 pISSN: 0304-9914 / eISSN: 2234-3008

CORRIGENDUM TO "THE IDEAL OF WEAKLY p-NUCLEAR OPERATORS AND ITS INJECTIVE AND SURJECTIVE HULLS" [J. KOREAN MATH. SOC. 56 (2019), NO. 1, PP. 225–237]

Ju Myung Kim

ABSTRACT. We indicate that some results in [2] are wrong, and obtain some new results on them.

1. Weakly 1-nuclear operators

We use all notations, terminologies and definitions in [2]. Let us recall the concept of a weakly 1-nuclear operator from a Banach space X to a Banach space Y as any operator which can be represented as

$$T = \sum_{n=1}^{\infty} x_n^* \underline{\otimes} y_n \in \mathcal{N}_{w1}(X, Y),$$

where $(x_n^*)_n \in \ell_1^w(X^*)$ and $(y_n)_n \in c_0^w(Y)$. Every weakly 1-nuclear operator $T: X \to Y$ is weakly compact because $T(B_X)$ is contained in the convex hull of a weakly null sequence in Y.

Proposition 1.1 ([2, Proposition 2.2]). Let $1 \le p \le \infty$ and let $T: X \to Y$ be a linear map. Then $T \in \mathcal{N}_{wp}(X,Y)$ if and only if there exist $R \in \mathcal{L}(X,\ell_p)$ and $S \in \mathcal{L}(\ell_p,Y)$ (ℓ_p is replaced by c_0 if $p = \infty$) such that T = SR. In this case, $\|T\|_{\mathcal{N}_{wp}} = \inf \|S\| \|R\|$, where the infimum is taken over all such factorizations.

The case p=1 in Proposition 1.1 is wrong. Indeed, if that statement would be true, then the identity map $id_{\ell_1}:\ell_1\to\ell_1$ should be a weakly compact operator. This is a contradiction because ℓ_1 has the Schur property.

The following lemma is well known but we provide a proof for the sake of completeness of our presentation.

Received November 10, 2019; Accepted January 31, 2020.

²⁰¹⁰ Mathematics Subject Classification. 46B28, 46B45, 47L20.

 $Key\ words\ and\ phrases.$ Banach operator ideal, nuclear operator.

This work was supported by National Research Foundation of Korea (NRF-2018 R1D1A1B07043566).

1054 J. M. KIM

Lemma 1.2. Let X and Y be Banach spaces. An operator $T: X^* \to Y$ is weak* to weak continuous if and only if $T^*(Y^*) \subset i_X(X)$, where $i_X: X \to X^{**}$ is the canonical isometry.

Proof. Assume that T is weak* to weak continuous and let $y^* \in Y^*$. To show that T^*y^* is a weak* continuous functional, let $(x^*_{\alpha})_{\alpha}$ be a net in X^* and let $x^* \in X^*$ be such that $\lim_{\alpha} x^*_{\alpha} = x^*$ in the weak* topology on X^* . Since T is weak* to weak continuous,

$$\lim_{\alpha} T^* y^*(x_{\alpha}^*) = \lim_{\alpha} y^*(Tx_{\alpha}^*) = y^*(Tx^*) = T^* y^*(x^*).$$

To show the converse, let $(x_{\alpha}^*)_{\alpha}$ be a net in X^* and let $x^* \in X^*$ be such that $\lim_{\alpha} x_{\alpha}^* = x^*$ in the weak* topology on X^* . By assumption, for every $y^* \in Y^*$,

$$\lim_{\alpha} y^*(Tx_{\alpha}^*) = \lim_{\alpha} T^*y^*(x_{\alpha}^*) = T^*y^*(x^*) = y^*(Tx^*).$$

Hence T is weak* to weak continuous.

We now obtain some factorizations of weakly 1-nuclear operators.

Theorem 1.3. Let X and Y be Banach spaces and let $T: X \to Y$ be a linear map. Then the following statements are equivalent.

- (a) $T \in \mathcal{N}_{w1}(X, Y)$.
- (b) There exist an operator $R: X \to \ell_1$ and a weak* to weak continuous operator $S: \ell_1 \to Y$ such that T = SR.
- (c) There exist operators $R: X \to \ell_1$ and $S \in \mathcal{N}_{w1}(\ell_1, Y)$ such that T = SR.

In this case, $||T||_{\mathcal{N}_{w1}} = \inf ||S|| ||R|| = \inf ||S||_{\mathcal{N}_{w1}} ||R||$, where the infimums are taken over all such factorizations.

Proof. (c) \Rightarrow (a) is clear and $||T||_{\mathcal{N}_{w_1}} \leq \inf ||\cdot||_{\mathcal{N}_{w_1}}||\cdot||$. (a) \Rightarrow (b): Let $T \in \mathcal{N}_{w_1}(X,Y)$ and let

$$T = \sum_{n=1}^{\infty} x_n^* \underline{\otimes} y_n$$

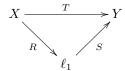
be an arbitrary weakly 1-nuclear representation. Consider the maps

$$R: X \to \ell_1, x \mapsto (x_n^*(x))_n$$
 and $S: \ell_1 \to Y, (\alpha_n)_n \mapsto \sum_{n=1}^{\infty} \alpha_n y_n.$

Then we see that $||R|| = ||(x_n^*)_n||_1^w$ and $||S|| = ||(y_n)_n||_{\infty}$. Also, for every $y^* \in Y^*$ and $(\alpha_n)_n \in \ell_1$,

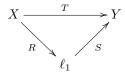
$$(S^*y^*)((\alpha_n)_n) = \sum_{n=1}^{\infty} \alpha_n y^*(y_n) = \langle (\alpha_n)_n, (y^*(y_n))_n \rangle.$$

Since $(y_n)_n \in c_0^w(Y)$, $S^*(y^*) \in i_{c_0}(c_0)$. Thus by Lemma 1.2, S is weak* to weak continuous and the following diagram is commutative.



Since the weakly 1-nuclear representation of T was arbitrary, inf $\|\cdot\| \|\cdot\| \le \|T\|_{\mathcal{N}_{w_1}}$.

 $(b)\Rightarrow(c)$: Let T have the following factorization in (b).



It follows that

$$S = \sum_{n=1}^{\infty} e_n^* \underline{\otimes} Se_n$$

and $\|(e_n^*)_n\|_1^w = 1$, where e_n and e_n^* are the standard unit vectors in ℓ_1 and c_0 , respectively. Since S is weak* to weak continuous and $\lim_{n\to\infty}e_n = 0$ in the weak* topology on ℓ_1 , $(Se_n)_n \in c_0^w(Y)$ and $\|(Se_n)_n\|_{\infty} \leq \|S\|$.

Consequently, $S \in \mathcal{N}_{w1}(\ell_1, Y)$ and

$$\inf \|\cdot\|_{\mathcal{N}_{w_1}} \|\cdot\| \le \|S\| \|R\|.$$

It was shown in [2, Lemma 2.3] that if 1 , then for every Banach space <math>X, $\mathcal{N}_{wp}(X, \ell_p)$ (respectively, $\mathcal{N}_{wp}(\ell_p, X)$) is isometrically equal to $\mathcal{L}(X, \ell_p)$ (respectively, $\mathcal{L}(\ell_p, X)$) ($\ell_p = c_0$ when $p = \infty$). For the case p = 1, we have:

Proposition 1.4. For every Banach space X,

$$\mathcal{N}_{w1}(X,\ell_1) = \mathcal{K}(X,\ell_1)$$

holds isometrically.

Proof. Note that

$$\mathcal{N}_{w1}(X, \ell_1) \subset \mathcal{W}(X, \ell_1) = \mathcal{K}(X, \ell_1).$$

To show the reverse inclusion, let $T = \sum_{n=1}^{\infty} e_n^* T \underline{\otimes} e_n \in \mathcal{K}(X, \ell_1)$ and let $\varepsilon > 0$. Since $T(B_X)$ is a relatively compact subset of ℓ_1 ,

$$\lim_{l \to \infty} \sup_{x \in B_X} \sum_{n > l} |e_n^* Tx| = 0.$$

1056 J. M. KIM

Then there exists a sequence $(\beta_n)_n$ with $\beta_n > 1$ and $\lim_{n \to \infty} \beta_n = \infty$ such that

$$\lim_{l\to\infty}\sup_{x\in B_X}\sum_{n>l}|\beta_ne_n^*Tx|=0\ \text{ and }\ \sup_{x\in B_X}\sum_{n=1}^\infty|\beta_ne_n^*Tx|\leq (1+\varepsilon)\sup_{x\in B_X}\sum_{n=1}^\infty|e_n^*Tx|$$

(cf. [3, Lemma 3.1]). Now, we see that

$$T = \sum_{n=1}^{\infty} \beta_n e_n^* T \underline{\otimes} (e_n/\beta_n) \in \mathcal{N}_{w1}(X, \ell_1)$$

and

$$||T||_{\mathcal{N}_{w1}} \le (1+\varepsilon) \sup_{x \in B_X} \sum_{n=1}^{\infty} |e_n^* Tx| = (1+\varepsilon)||T||.$$

2. Weakly 1-compact sets

A subset K of a Banach space X is called weakly 1-compact if there exists $(x_n)_n \in \ell_1^w(X)$ such that

$$K \subset 1\text{-}co(x_n)_n := \Big\{ \sum_{n=1}^{\infty} \alpha_n x_n : (\alpha_n)_n \in B_{c_0} \Big\}.$$

Proposition 2.1 ([2, Lemma 3.5(a)]). Let X be a Banach space. For $1 \le p < \infty$, if $(x_n)_n \in \ell_p^w(X)$, then the set $p\text{-}co(x_n)_n$ is balanced, convex and weakly compact.

The case p=1 in Proposition 2.1 is wrong. Indeed, let $(e_n)_n$ be the sequence of standard unit vectors in c_0 . Then we see that $(e_n)_n \in \ell_1^w(c_0)$ and $1\text{-}co(e_n)_n = B_{c_0}$. Consequently, B_{c_0} is a weakly 1-compact subset of c_0 . But it is not weakly compact. Generally, we have:

Proposition 2.2. The following statements are equivalent for a Banach space X.

- (a) X does not have an isomorphic copy of c_0 .
- (b) Every weakly 1-compact set in X is relatively compact.
- (c) Every weakly 1-compact set in X is relatively weakly compact.
- (d) For every $(x_n)_n \in \ell_1^w(X)$, the set 1-co $(x_n)_n$ is relatively weakly compact.

Proof. (b) \Rightarrow (c) and (c) \Rightarrow (d) are trivial.

It is well known that a Banach space X does not have an isomorphic copy of c_0 if and only if every weakly 1-summable sequence in X is unconditionally summable (cf. [4, Theorem 4.3.12]). Also a sequence $(x_n)_n$ in X is unconditionally summable if and only if

$$\lim_{l \to \infty} \sup_{x^* \in B_{X^*}} \sum_{n > l} |x^*(x_n)| = 0$$

(cf. [1, Theorem 1.9]).

(a) \Rightarrow (b): Let $(x_n)_n \in \ell_1^w(X)$. By (a), $(x_n)_n$ is unconditionally summable. Hence by [1, Theorem 1.9], $1\text{-}co(x_n)_n$ is relatively compact.

(d) \Rightarrow (a): Let $(x_n)_n \in \ell_1^w(X)$. Define the map

$$S: c_0 \to X$$
 by $S(\alpha_n)_n = \sum_{n=1}^{\infty} \alpha_n x_n$.

By (d), S is a weakly compact operator. We see that the adjoint operator $S^*: X^* \to \ell_1$ is defined by

$$S^*x^* = (x^*(x_n))_n.$$

Since S^* is weakly compact, by the Schur property S^* is compact. Consequently, $(x_n)_n$ is unconditionally summable.

References

- J. Diestel, H. Jarchow, and A. Tonge, Absolutely Summing Operators, Cambridge Studies in Advanced Mathematics, 43, Cambridge University Press, Cambridge, 1995. https://doi.org/10.1017/CB09780511526138
- J. M. Kim, The ideal of weakly p-nuclear operators and its injective and surjective hulls,
 J. Korean Math. Soc. 56 (2019), no. 1, 225-237. https://doi.org/10.4134/JKMS.j180151
- [3] _____, The injective and surjective hulls of the ideal of (p,q)-compact operators and their approximation properties, J. Math. Anal. Appl. 473 (2019), no. 1, 71-86. https://doi.org/10.1016/j.jmaa.2018.12.035
- [4] R. E. Megginson, An Introduction to Banach Space Theory, Graduate Texts in Mathematics, 183, Springer-Verlag, New York, 1998. https://doi.org/10.1007/978-1-4612-0603-3

Ju Myung Kim

DEPARTMENT OF MATHEMATICS AND STATISTICS

SEJONG UNIVERSITY

SEOUL 05006, KOREA

 $Email\ address: {\tt kjm21@sejong.ac.kr}$