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Abstract. We indicate that some results in [2] are wrong, and obtain

some new results on them.

1. Weakly 1-nuclear operators

We use all notations, terminologies and definitions in [2]. Let us recall the
concept of a weakly 1-nuclear operator from a Banach space X to a Banach
space Y as any operator which can be represented as

T =

∞∑
n=1

x∗n⊗yn ∈ Nw1(X,Y ),

where (x∗n)n ∈ `w1 (X∗) and (yn)n ∈ cw0 (Y ). Every weakly 1-nuclear operator
T : X → Y is weakly compact because T (BX) is contained in the convex hull
of a weakly null sequence in Y .

Proposition 1.1 ([2, Proposition 2.2]). Let 1 ≤ p ≤ ∞ and let T : X → Y be
a linear map. Then T ∈ Nwp(X,Y ) if and only if there exist R ∈ L(X, `p) and
S ∈ L(`p, Y ) (`p is replaced by c0 if p = ∞) such that T = SR. In this case,
‖T‖Nwp = inf ‖S‖‖R‖, where the infimum is taken over all such factorizations.

The case p = 1 in Proposition 1.1 is wrong. Indeed, if that statement would
be true, then the identity map id`1 : `1 → `1 should be a weakly compact
operator. This is a contradiction because `1 has the Schur property.

The following lemma is well known but we provide a proof for the sake of
completeness of our presentation.
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Lemma 1.2. Let X and Y be Banach spaces. An operator T : X∗ → Y is
weak∗ to weak continuous if and only if T ∗(Y ∗) ⊂ iX(X), where iX : X → X∗∗

is the canonical isometry.

Proof. Assume that T is weak∗ to weak continuous and let y∗ ∈ Y ∗. To show
that T ∗y∗ is a weak∗ continuous functional, let (x∗α)α be a net in X∗ and let
x∗ ∈ X∗ be such that limα x

∗
α = x∗ in the weak∗ topology on X∗. Since T is

weak∗ to weak continuous,

lim
α
T ∗y∗(x∗α) = lim

α
y∗(Tx∗α) = y∗(Tx∗) = T ∗y∗(x∗).

To show the converse, let (x∗α)α be a net in X∗ and let x∗ ∈ X∗ be such that
limα x

∗
α = x∗ in the weak∗ topology on X∗. By assumption, for every y∗ ∈ Y ∗,

lim
α
y∗(Tx∗α) = lim

α
T ∗y∗(x∗α) = T ∗y∗(x∗) = y∗(Tx∗).

Hence T is weak∗ to weak continuous. �

We now obtain some factorizations of weakly 1-nuclear operators.

Theorem 1.3. Let X and Y be Banach spaces and let T : X → Y be a linear
map. Then the following statements are equivalent.

(a) T ∈ Nw1(X,Y ).
(b) There exist an operator R : X → `1 and a weak∗ to weak continuous

operator S : `1 → Y such that T = SR.
(c) There exist operators R : X → `1 and S ∈ Nw1(`1, Y ) such that T =

SR.

In this case, ‖T‖Nw1 = inf ‖S‖‖R‖ = inf ‖S‖Nw1‖R‖, where the infimums are
taken over all such factorizations.

Proof. (c)⇒(a) is clear and ‖T‖Nw1 ≤ inf ‖ · ‖Nw1‖ · ‖.
(a)⇒(b): Let T ∈ Nw1(X,Y ) and let

T =

∞∑
n=1

x∗n⊗yn

be an arbitrary weakly 1-nuclear representation. Consider the maps

R : X → `1, x 7→ (x∗n(x))n and S : `1 → Y, (αn)n 7→
∞∑
n=1

αnyn.

Then we see that ‖R‖ = ‖(x∗n)n‖w1 and ‖S‖ = ‖(yn)n‖∞.
Also, for every y∗ ∈ Y ∗ and (αn)n ∈ `1,

(S∗y∗)((αn)n) =

∞∑
n=1

αny
∗(yn) = 〈(αn)n, (y

∗(yn))n〉.
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Since (yn)n ∈ cw0 (Y ), S∗(y∗) ∈ ic0(c0). Thus by Lemma 1.2, S is weak∗ to
weak continuous and the following diagram is commutative.

X
T //

R   

Y

`1

S

??

Since the weakly 1-nuclear representation of T was arbitrary, inf ‖ · ‖‖ · ‖ ≤
‖T‖Nw1

.
(b)⇒(c): Let T have the following factorization in (b).

X
T //

R   

Y

`1

S

??

It follows that

S =

∞∑
n=1

e∗n⊗Sen

and ‖(e∗n)n‖w1 = 1, where en and e∗n are the standard unit vectors in `1 and c0,
respectively. Since S is weak∗ to weak continuous and limn→∞ en = 0 in the
weak∗ topology on `1, (Sen)n ∈ cw0 (Y ) and ‖(Sen)n‖∞ ≤ ‖S‖.

Consequently, S ∈ Nw1(`1, Y ) and

inf ‖ · ‖Nw1
‖ · ‖ ≤ ‖S‖‖R‖. �

It was shown in [2, Lemma 2.3] that if 1 < p ≤ ∞, then for every Ba-
nach space X, Nwp(X, `p) (respectively, Nwp(`p, X)) is isometrically equal to
L(X, `p) (respectively, L(`p, X)) (`p = c0 when p = ∞). For the case p = 1,
we have:

Proposition 1.4. For every Banach space X,

Nw1(X, `1) = K(X, `1)

holds isometrically.

Proof. Note that

Nw1(X, `1) ⊂ W(X, `1) = K(X, `1).

To show the reverse inclusion, let T =
∑∞
n=1 e

∗
nT⊗en ∈ K(X, `1) and let

ε > 0. Since T (BX) is a relatively compact subset of `1,

lim
l→∞

sup
x∈BX

∑
n≥l

|e∗nTx| = 0.
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Then there exists a sequence (βn)n with βn > 1 and limn→∞ βn =∞ such that

lim
l→∞

sup
x∈BX

∑
n≥l

|βne∗nTx| = 0 and sup
x∈BX

∞∑
n=1

|βne∗nTx| ≤ (1 + ε) sup
x∈BX

∞∑
n=1

|e∗nTx|

(cf. [3, Lemma 3.1]). Now, we see that

T =

∞∑
n=1

βne
∗
nT⊗(en/βn) ∈ Nw1(X, `1)

and

‖T‖Nw1
≤ (1 + ε) sup

x∈BX

∞∑
n=1

|e∗nTx| = (1 + ε)‖T‖.
�

2. Weakly 1-compact sets

A subset K of a Banach space X is called weakly 1-compact if there exists
(xn)n ∈ `w1 (X) such that

K ⊂ 1-co(xn)n :=
{ ∞∑
n=1

αnxn : (αn)n ∈ Bc0
}
.

Proposition 2.1 ([2, Lemma 3.5(a)]). Let X be a Banach space. For 1 ≤ p <
∞, if (xn)n ∈ `wp (X), then the set p-co(xn)n is balanced, convex and weakly
compact.

The case p = 1 in Proposition 2.1 is wrong. Indeed, let (en)n be the sequence
of standard unit vectors in c0. Then we see that (en)n ∈ `w1 (c0) and 1-co(en)n =
Bc0 . Consequently, Bc0 is a weakly 1-compact subset of c0. But it is not weakly
compact. Generally, we have:

Proposition 2.2. The following statements are equivalent for a Banach space
X.

(a) X does not have an isomorphic copy of c0.
(b) Every weakly 1-compact set in X is relatively compact.
(c) Every weakly 1-compact set in X is relatively weakly compact.
(d) For every (xn)n ∈ `w1 (X), the set 1-co(xn)n is relatively weakly com-

pact.

Proof. (b)⇒(c) and (c)⇒(d) are trivial.
It is well known that a Banach space X does not have an isomorphic copy

of c0 if and only if every weakly 1-summable sequence in X is unconditionally
summable (cf. [4, Theorem 4.3.12]). Also a sequence (xn)n in X is uncondi-
tionally summable if and only if

lim
l→∞

sup
x∗∈BX∗

∑
n≥l

|x∗(xn)| = 0

(cf. [1, Theorem 1.9]).
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(a)⇒(b): Let (xn)n ∈ `w1 (X). By (a), (xn)n is unconditionally summable.
Hence by [1, Theorem 1.9], 1-co(xn)n is relatively compact.

(d)⇒(a): Let (xn)n ∈ `w1 (X). Define the map

S : c0 → X by S(αn)n =

∞∑
n=1

αnxn.

By (d), S is a weakly compact operator. We see that the adjoint operator
S∗ : X∗ → `1 is defined by

S∗x∗ = (x∗(xn))n.

Since S∗ is weakly compact, by the Schur property S∗ is compact. Conse-
quently, (xn)n is unconditionally summable. �
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