• Title/Summary/Keyword: operator equation

Search Result 375, Processing Time 0.027 seconds

MANN-ITERATION PROCESS TO THE SOLUTION OF $y=x+Tx$ FOR AN ACDRETIVE OPERATOR T IN SOME BANACH SPACES

  • Park, Jong-An
    • Communications of the Korean Mathematical Society
    • /
    • v.9 no.4
    • /
    • pp.819-823
    • /
    • 1994
  • If H is a Hilbert space, then an operator $T : D(T) \subset H \to H$ is said to be monotone if $$ (x-y, Tx-Ty) \geq 0$$ for any x, y in D(T). Many authors [1], [4] obtained the existence theorem for the equation $y = x + Tx$ for x, given an element y in H and a monotone operator T. On the other hand some iterative methods were applied to the approximations for the solution of the above equation [6], [8]. For example Bruck [2] obtained the iterative solution of the above equation with an explicit error estimate as follows.

  • PDF

REGULARITY OF THE SCHRÖDINGER EQUATION FOR A CAUCHY-EULER TYPE OPERATOR

  • CHO, HONG RAE;LEE, HAN-WOOL;CHO, EUNSUNG
    • East Asian mathematical journal
    • /
    • v.35 no.1
    • /
    • pp.1-7
    • /
    • 2019
  • We consider the initial value problem of the Schrodinger equation for an interesting Cauchy-Euler type operator ${\mathfrak{R}}$ on ${\mathbb{C}}^n$ that is an analogue of the harmonic oscillator in ${\mathbb{R}}^n$. We get an appropriate $L^1-L^{\infty}$ dispersive estimate for the solution of the initial value problem.

Stability Improved Split-step Parabolic Equation Model

  • Kim, Tae-Hyun;Seong, Woojae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.3E
    • /
    • pp.105-111
    • /
    • 2002
  • The parabolic equation technique provides an excellent model to describe the wave phenomena when there exists a predominant direction of propagation. The model handles the square root wave number operator in paraxial direction. Realization of the pseudo-differential square root operator is the essential part of the parabolic equation method for its numerical accuracy. The wide-angled approximation of the operator is made based on the Pade series expansion, where the branch line rotation scheme can be combined with the original Pade approximation to stabilize its computational performance for complex modes. The Galerkin integration has been employed to discretize the depth-dependent operator. The benchmark tests involving the half-infinite space, the range independent and dependent environment will validate the implemented numerical model.

ON A SYSTEM OF NONLINEAR INTEGRAL EQUATION WITH HYSTERESIS

  • Darwish, M.A.
    • Journal of applied mathematics & informatics
    • /
    • v.6 no.2
    • /
    • pp.407-416
    • /
    • 1999
  • In this paper we give some sufficient conditions for the existence and uniqueness of a continuous for the existence and uniqueness of a continuous slution of the system of Urysohn-Volterra equation with hysteresis.

THE APPLICATION OF STOCHASTIC ANALYSIS TO COUNTABLE ALLELIC DIFFUSION MODEL

  • Choi, Won
    • Bulletin of the Korean Mathematical Society
    • /
    • v.41 no.2
    • /
    • pp.337-345
    • /
    • 2004
  • In allelic model X = ($\chi_1\chi$_2ㆍㆍㆍ, \chi_d$), M_f(t) = f(p(t)) - ${{\int^t}_0}\;Lf(p(t))ds$ is a P-martingale for diffusion operator L under the certain conditions. In this note, we can show existence and uniqueness of solution for stochastic differential equation and martingale problem associated with mean vector. Also, we examine that if the operator related to this martingale problem is connected with Markov processes under certain circumstance, then this operator must satisfy the maximum principle.

THE SOLUTIONS OF SOME OPERATOR EQUATIONS

  • Cvetkovic-Ilic, Dragana S.
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.5
    • /
    • pp.1417-1425
    • /
    • 2008
  • In this paper we consider the solvability and describe the set of the solutions of the operator equations $AX+X^{*}C=B$ and $AXB+B^{*}X^{*}A^{*}=C$. This generalizes the results of D. S. Djordjevic [Explicit solution of the operator equation $A^{*}X+X^{*}$A=B, J. Comput. Appl. Math. 200(2007), 701-704].

ON OPERATORS WITH AN ABSOLUTE VALUE CONDITION

  • Jeon, In-Ho;DUGGAL, B.P.
    • Journal of the Korean Mathematical Society
    • /
    • v.41 no.4
    • /
    • pp.617-627
    • /
    • 2004
  • Let (equation omitted) denote the class of bounded linear Hilbert space operators with the property that $\midA^2\mid\geq\midA\mid^2$. In this paper we show that (equation omitted)-operators are finitely ascensive and that, for non-zero operators A and B, A (equation omitted) B is in (equation omitted) if and only if A and B are in (equation omitted). Also, it is shown that if A is an operator such that p(A) is in (equation omitted) for a non-trivial polynomial p, then Weyl's theorem holds for f(A), where f is a function analytic on an open neighborhood of the spectrum of A.

REMARK ON A SEGAL-LANGEVIN TYPE STOCHASTIC DIFFERENTIAL EQUATION ON INVARIANT NUCLEAR SPACE OF A Γ-OPERATOR

  • Chae, Hong Chul
    • Korean Journal of Mathematics
    • /
    • v.8 no.2
    • /
    • pp.163-172
    • /
    • 2000
  • Let $\mathcal{S}^{\prime}(\mathbb{R})$ be the dual of the Schwartz spaces $\mathcal{S}(\mathbb{R})$), A be a self-adjoint operator in $L^2(\mathbb{R})$ and ${\Gamma}(A)^*$ be the adjoint operator of ${\Gamma}(A)$ which is the second quantization operator of A. It is proven that under a suitable condition on A there exists a nuclear subspace $\mathcal{S}$ of a fundamental space $\mathcal{S}_A$ of Hida's type on $\mathcal{S}^{\prime}(\mathbb{R})$) such that ${\Gamma}(A)\mathcal{S}{\subset}\mathcal{S}$ and $e^{-t{\Gamma}(A)}\mathcal{S}{\subset}\mathcal{S}$, which enables us to show that a stochastic differential equation: $$dX(t)=dW(t)-{\Gamma}(A)^*X(t)dt$$, arising from the central limit theorem for spatially extended neurons has an unique solution on the dual space $\mathcal{S}^{\prime}$ of $\mathcal{S}$.

  • PDF