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NONLINEAR FUNCTIONAL DIFFERENTIAL
EQUATIONS WITH SUBDIFFERENTIAL OPERATOR

Do0o-HOAN JEONG AND JIN-MUN JEONG

1. Introduction

Let H and V be two real Hilbert spaces such that the the corre-
sponding tnjections V C H C V* are densely continuous. Here V*
stands for the dual space of V. Let the operator A be given a sin-
gle valued operator, which 1s hemicontinuous and coercive from V' to
V*. Let ¢ : V — (—o00,+0o0] be a lower semicontinuous, proper con-
vex function Then the subdifferential operator 8¢ : V' — V* of ¢ is
defined by

9g(z) = {a” €V ¢(z) <o(y) + =",z —y), yeV}

where (-,-)} denotes the duality paring between V* and V. We are

interested in the following nonlinear functional differential equation on
H

(1.1) dfgit) + Az(t) + 8¢(z(t)) 3 F(t, z(t)) + h(t), 0<t<T,

z{0) = xp

where the nonlinear term is given by

t
flt,z) = /0 k(t — s)g{s, z(s))ds
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Here, the nonlinear mapping g is a Lipschitz continuous from R x V
into H. If A is a linear continuous symmetric operator from V into V*
and satisfies the coercive condition, then the equation (1.1), which is
called the linear parabolic variational inequality, was widely developed
as seen in section 4.3.2 of Barbu [5]. Using more general hypotheses
for nonlinear term f{-,z), we intend to investigate the existence and
the norm estimate of a solution of the above nonlinear equation on
L0, T; V)NW'2(0,T; V*), which is also applicable to optimal control
problem.

2. Perturbation of subdifferential operator

A norm on V(resp. H)} will be denoted by {|-{| (resp. |-|) respectively.
The duality pairing between the element v; of V* and the element v,
of V is denoted by (v, %9}, which is the ordinary inner product in A
if vy, v2 € H. For the sake of simplicity, we may consider

el < Jul < [[ufis, weV

where {| - ||+ is the norm of the element of V*.

REMARK 1. If an operator Ag is bounded linear from V to V* and
generates an analytic semigroup, then it 1s easily seen that

T
H={zeV*: f | Aget4o3]2dt < o0},
0

for the time 7" > 0. Therefore, in terms of the intermediate theory we
can see that

(V,v*) 12=H
where (V, V*)%,z denotes the real interpolation space between V and
V>,

We note that a nonlinear operator A is said to be hemicontinuous
on V if

w — iir%A(a: + ty) = Ax
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for every z, y € V where "w — lim” indicates the weak convergence
on V. Let A: V — V” be given a single valued and hemicontinuous
operator from V to V* such that

(A1) A(0) =0,
(Au — Av,u —v) > w|ju —v||> — wolu — v|2,
(A2) | Aullx < wa(jiul| + 1)

for every u,v € V where wy € R and wy, w3 are some positive con-
stants. Here, we note that if 0 # A(0) we need the following assumption

(Au,u) > wnlfull® - waluf?

for every v € V. It 1s also known that A + weol 15 maximal monotone
and R(A+ wyl) = V* where R(A + wal) is the range of A 4 w»I and
I is the identity operator.

First, let us concern with the following perturbation of subdifferen-
tial operator:

(2.1) dﬂ;&” + Az(t) + 0p(z(t) 3 h(t), 0<t<T,

.’17(0} = Zg

To prove the regularity for nonlinear equation (1.1) without nonlinear
term f(-,z) we apply the method of the section 4.3.2 in [5].

TuEOREM 2.1. Let h € L?(0,T;V*) and xp € V satisfying that
#(zo) < oo. Then the equation (2.1) has a unique solution

z € L¥0,T;V)nC([o,T]; H),
which satisfies
(2.2) HzlL2ne < C1(1 + l|zoll + Pl L20,7v7)-

where C is a constant and L2 N C = L2(0, T; VYN C((0, T}; H).
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Proof. Substituting v(t) = e*?'z(t) we can rewrite the equation
(2.1) as follows:

di:i(tt) + (A + woDu(t) + e~ “2' g (v(t)) 3 e “2*h(4),

(2.3) 0<t<T,

v(0) = e“?'xg.

Then the regular problem for the equation (2.1} is equivalent to that
for (2.3). Consider the operator L : D(LYC H - H

Lv = {Av+ e~ “?'8¢(v) + wov} N H, Vv e D(L)
D(L) = {v e V;{Av+ e “?"8¢(v) + wav} N H # 0}.

Since A + wol is a monotone, hemicontinuous and bounded operator
from V into V* and e “?*0d¢ is a maximal monotone, we infer by
Corollary 1.1 of Chapter 2 i [4] that L is maximal monotone. Then
by Theorem 1.4 in [5}(also see Theorem 2.3 and Corollary 2.1 in [4]), for
every o € D(L) and h € W1 1([0, T]; H) the Cauchy problem {2.3) has
a unique solution v € W1-°([0, T]; H). Let us assume that zo € D(L)
and h € WH2(0,T; H). Multiplying (2.1) by = — 2o and using (A1)
and the maximal monotonicity of 9¢ it holds

1d
(24) 56 — zo|® + wrillz(t) — zoli® < wala(t) — 2o

+ (h{t} - Azg — O¢(x0), z(t) — x0).
Since
(h{t) — Azg — 8¢(zp), z(t) — z0)

<11h(t) — Avo - 38(zo)ll. l2t) - zo)]
< smalIht) — zo = 08(ao) -+ Slix(t) - ol

for every real number ¢, so using Gronwall’s Lemma, inequality (2.4)
implies that

o(0) =0l + [ lets) ~ mollds < Cu( |h(s)|i2ds + el + 1
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for some positive constant Cy, that is,
(2.5) =zl rvincgo,rnm < Ci(l + llzoll + Al L20,r,v+))-

Hence we have proved (2.2). Let zg € V satisfying 0¢(zo) < coand h €
L*(0,T;V*). Then there exist sequences {zo.} C D(L) and {h.} C
W12(0,T; H) such that zg, — zo 1n V and hp, — h n L*(0,T;V*)
as n — oo. Let z, € W°(0,T; H) be the solution of (2.1) with the
imtial value zo, and with A, instead of h. Since O¢ 13 monotone, we
have

= Zlen(t) — (P + wnllzal) - 202

< (halt) = Bon (), 20(0) = 2 (1)) +waln(8) — 2 ()
2
< 5 lha®) = b O + S liza(®) — 2m (8}
+ walzn(t) — e ()2, ae,te (0,T),

for every real number ¢. Therefore, if we choose ¢ so that w; —c?/2 > 0

then by integrating over [0, 7' and using Gronwall’s inequality it follows
that

2
C "
|2 (t) = 2m (t)] + 2(w1 — )llenlt) — zm ()l L2070
< e®2 M (|10n — Tom| + € 2{|Rn — AmllL2(0,7,v7));
and hence, we have that lim, . z,(t) = z(t) exists in H. Further-

more, by using the maximal monotonicity of A+ 0¢ -+ wsl, it is easily
seen that x satisfies (2.1).

3. Nonlinear integrodifferential equation

Let g : [0,7] x V — H be a nonhnear mapping satisfying the fol-
lowing:

(g1) lg{t, =) — g(t,y)| < L||z — yl|
(82) 9(t,0) =0
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for a poéjtive constant L.
For z € L?(0,T;V) we set

f(t,2) = ]0 k(¢ — s)g(s,2(s))ds

where k belongs to L2(0,7).

REMARK 2. Ifg: [0,7)x H — H is a nonlinear mapping satisfying

lg(t,z) — g(t, )| < Llz — yl

for a positive constant L, then as is seen in {1], our results can be
obtained directly.

LEMMA 3.1. Letz € L2(0,T;V), T > 0. Then f(,z) € L%(0,T; H)
and

£ C 222050y < Lilkl 20, VT izl L2, rv) -

Moreover if z1, zg € L?(0,T;V), then

NFC 21) — FC 2z < LIKIIVT ey — z2)lr200,7,v).

Proof. From (gl), (g2) and using the Holder inequality it is easily
seen that

T t
1N Raorm < /0 | [o K(t - 5)g(s, 2(s))ds|dt
T t
2 2 2 3
< IIkl2 ]0 /0 12| (s) | Pdsdt

< TL2Hk“%ﬂ”xuiﬁ(o,'r;v)-

The proof of the second paragraph is similar.
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THEOREM 3.1. Let (Al), (A2), (gl) and (g2) be satisfied. Then
(1.1) has a unique solution

x e L*0,T;V)nC([0,T); H).
Furthermore, there exists a constant Cy such that
(3.1) lizllL2ne < Ca(1 + [|zol] + iRl L2(0,v+))-

If (zo,h) € V x L2(0,T;V*), then = € L2(0,T; V)N C([0,T); H) and
the mapping

V x L20,T; V*) 5 (zo, h) — = € L2(0, T; V)N C0, T}; H)

18 continuous.

Proof. Let y € L?(0,T;V). Then f(-,y(-)) € L*(0,T,H) from
Lemma 3.1. Thus, 1n virtue of Proposition 2.1 we know that the prob-
lem

(32) { D) 4 An(t) +06(x(t)) > ft,y(t) +hs), 0<E<T,
z(0) = zo

has a unique solution r, € L2(0,T;V)NC([0, T, H) corresponding To
y.
let us choose a constant ¢ > 0 such that
2 .
wp—C /2 >0
and let us fix T; > 0 so that

(3.3) (22w — )12 o k| VT < 1

Let z,, 2 = 1, 2, be solutions of (3.2) corresponding to y,. Then, by
the monotonicity of 3¢, 1t foliows that

(@1(t) — 22(t), 21 (1) — z2(1)) + (Az:1{t) — Aza(t), 21 (t) — z2(?))
S (f(tu(8) = F(8, y2(t)), 22 (1) — 22(2)),
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and hence, using the assumption (Al), we have that

L ) - (O +ealle() - 22O
(3.4) < welz1(t) — z2(t)}?
+ |1 f (&0 @) — F& v ()|«l]z(t) — z2(2)]]-
Since

15 &3 (@) — 76 g @)llzs(6) — 220
2
< 5l () - FEpOIE + Sla® - @

for every ¢ > 0 and by integrating on (3.4) over (0,73) we have

To
fea(To) — 5a(T) + (s = ) [ [l — a0t
1 To "
< ) ~ FEmliromyn +20n [ o) = w0

and by Gronwall’s inequality,

llzi—2ilT2 0 vy < (2ctwi—ct) 2D £, y1)— £ (£, y2) 320 1o vy
Thus, from {gl) it follows that

ll21 — 2alls < (2c%wy — ) 222 T L k| |V Tolly — #2ll L2o,0,v)-

Hence we have proved that y — z is strictly contraction from L2(0, Tp; V')
to itself if the condition (3.3) is satisfied. It gives the equation (1.1)
has a unique solution in [0, Tp).

Let y be the solution of

{ y( ) + Ay(t) + 0o(y(t)) 20, 0<t < Ty,
y(0) = =o.
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Then, since

%(w(t)wy(t))Jr(Aw(f)—Ay(t))+(3¢($(t))—3¢3(y(t))) 3 flt, z(t))+h(t),

by multiplying by z(#) — y(t) and using the monotonicity of d¢, we
obtain

' %%‘f(f) -y + willz(®) -y

< walz(t) — ()1 + [1f (¢, 2(t)) + (&)} l2(t) — y®)]]-
Therefore, putting
N = (22w, ~ )"l To,
from (gl) it follows
|z —yllz0,10,v) < NIFC2) + Rl|L2o,70,v7)
< NL||K|VTol|2l| 20,10, v) + NlIRllL20,70 vy
and hence

||50||L2(0,’11);V)

< . {yll
2
~ 1-NL||k||[VTs VIO To.y)

1
= 14 |{ol| + [k ,
TRy, L ol + Iz oz
< Co(1 + |lwol| + WPl L2 0, 1,v+))

for some positive constant Cs. Since the condition (3.3} is independent
of 1nitial values, the solution of (1.1) can be extended the internal
[0,nTp] for natural number n, i.e., for the imitial z(nT) 1n the interval
[nTh, (n + 1)T}], as analogous estimate (3.5) holds for the solution in
[0,{n + 1)Tp]. Furthermore, by the similar way as (2.4) and (2.5) in
section 2, the estimate (3.1} is easily obtained.

Now we prove the last paragraph. If (x9,h) € V x L¥0,T;V*)
then = belongs to L2(0,T; V) Let (zq,,h,) € V x L*(0,T;V*) and =,
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be the solution of (1.1) with (zq.,h,) in place of (zg,u) for + = 1, 2.
Multiplying on (1.1) by z;(t} — z2(¢), we have
(3.6)

l1d

5 (1) — aa(t) + nllaa(s) - wa (B

<walzr () — 22 () + |IF & (1) — £t v2(E)|[u]lz1(t) — ()]
+ [|R1(8) = ha(Dile||z1(t) — z2(t}]|

If wy — ¢?/2 > 0 then we can choose a constant ¢; > 0 so that
wy — 2/2 ~c¥/2 >0
and

R (8) — Ra()la]lz2 (t) — 22(8)] si—;inm(o ~ ha(B)]2

C% 2
T ENOEEACI

Let T3 < T be such that
2wy — c? — & — ¢ 222 A L|{k||V/Ty > 0.

Integrating on (3.6) over [0, 7] where T} < T and as is seen in the first
part of proof, it follows

(w1 — ¢ = ller — z2llF2(0 101

< 227H{||zo1 — zoa|[ + El§||f(t,y1) - ftt, y2)||2L2(0‘To:V')
+ ggllm — haflr20 vy}
< 22T {|lzoy — zoal| + C—IQ"L”’CH\/TJHII — zallLro10,v)
+ ;%th — halle20,1;v) }-
Putting that

N1 = 2(.‘)1 - 02 - C% - (3_282“’27‘l L”k”\/f;
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we have

2(4.!2 Tl

Ny

e i
(3.7) |21 — x2([r2 < ({lzo1 — o2l + gllhl — hal]).
1

Suppose (Zgn, hn) — (zo,h) in H x L?(0,T;V*), and let z, and =
be the solutions (1.1} with (zgn,h,) and (zo, h), respectively. Then,
by virtue of (3.7) and (3.6), we see that =, — z in L%*(0,7},V} N
C([0,T1]; H). This implies that z,(Ty) — z(T}) in V. Therefore the
same argument shows that z,, — z in

LTy, min{2T}, T}; V) N C([Ty, min{27y, T}], H).

Repeating this process, we conclude that z, — z in L%(0,T;V) N
C([0,T], H).
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