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Abstract

The parabolic equation technique provides an excellent model to describe the wave phenomena when there exists a 

predominant direction of propagation. The model handles the square root wave number operator in paraxial direction. 

Realization of the pseudo-differential square root operator is the essential part of the parabolic equation method for its 

numerical accuracy. The wide-angled approximation of the operator is made based on the Pad6 series expansion, where 

the branch line rotation scheme can be combined with the original Pad6 approximation to stabilize its computational 

performance for complex modes. The Galerkin integration has been employed to discretize the depth-dependent operator, 

lhe benchmark tests involving the half-infinite space, the range independent and dependent environment will validate the 

implemented numerical model.
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I. I개roduction

Since Tappert^s introduction of the parabolic equation 

(PE) method into underwater acoustics community, a variety 

of schemes have been applied to solve the range dependent 

p ropagation problem. In the beginning, they were often 

v alnerable to both stability and accuracy problems until 

highly accurate approximation techniques to the pseudo- 

d:fferential operator involved in the parabolic equation 

model were developed.

The wide-angled parabolic equation has been derived to 

account for the complete angular spectrum of the forward 

p -opagation part of the wave equation. Together with the 

development in accuracy of the square root operator, PE 

n iethod made fiirther progress by devising a better starting 
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field for more accurate near field solution. But, several 

authors pointed out the stability problems of the appro­

ximated operator in dealing with complex modes卩,2].

Collins developed a range-dependent acoustic model, 

called RAM[3,4], which has been generally adopted as 

a benchmark code in the underwater acoustics community. 

The split-step integrating formulation was taken to 

propagate the depth-discretized solution. The Pad6 appro­

ximation capable of representing a wide range of angular 

spectrum makes it possible for the split-step formulation 

to be a more powerful propagator in accuracy than finite 

difference schemes. However, its mathematical flaws, i.e. 

poles located at a physically meaningful region, can cause 

numerical problems in dealing with the environment in 

which the complex modes lying near the pole positions 

of the approximation are excited. Although Collins 

devised the modified Pad6 approximation method with 

stability constraints[2], it does not provide a qualitative 
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insight fbr the operator.

The rotated branch cut rational approximation fbr the 

square root operator suggested by Milinazzo et al.[5], one 

of the remedy to the problem related to the poles, allows 

the quantification of stability in a clearer way than the 

others. Moreover, the application is by no means restricted 

by the order of approximation. The idea, called the branch 

line controlled Pad6 approximation, is extended to the 

approximation of the exponential propagation operator. In 

this paper, this method of branch line control is applied 

to the parabolic equation model based on the split-step 

formulation. Several benchmark tests will validate the 

numerical accuracy of the implemented code.

II. Derivation of the Split-step Parabolic

Equation

Starting with the Helmholtz equation with azimuthal 

symmetry in cylindrical coordinates (r, z)

+副嘿)+心)으(/衆)+s。, ⑴

the change of variables, p = 辭顼),is used to arrive at 

the following equaticm:

導 + 心)으(3号鴛)+ (炉+汞)0=0. ⑵

Additionally, the fer-field approximation {kr V1) can 

be made to give

「礬顼z)으([爲碧：) +旅伽•=(), ⑶

where n ndicates the index of refraction defined by 

/；)and cq is the reference sound speed.

Separating paraxial radial dependency of the phase, 

e 诵"，the out-going wave equation corresponds to factoring

쓰 = 씨 T+\" +穹으 (為으))农 (4) 

where W=(j)e tk°r.

It should be noticed that one-way wave equation model 

is arrived based on the following three assumptions: (1) 

it is in the far field, (2) no back-scattered field exists or 

at least it has negligible effect on the full wave s이ution, 

and (3) the square root differential operator will have 

almost no variation in the radial direction. Thus, the 

parabolic equation technique is incapable of analyzing the 

wave propagation in the environment where the reflected 

(back-propagated) field becomes significant. Although the 

two-way PE can be adopted for this back propagating 

problems by taking both the forward and backward 

continuity conditions into consideration, it requires a great 

amount of computing resources and time.

From the practical point view, the parabolic equation for 

the impedance-reduced pressure, the energy-conserving 

model[6,7], is more convenient.

씅 = 시「1 + / 痹 +、縹 으 (他 으 a씨)",(5)

where r, z) =z)la(z) and q(n) =V

Denoting the differential operator in (5) as L=沃()(一 1 + 

\l 决 + 卩신㈠寸$。(力)), the general solution is V a(z)続 dz \ p(2)dz ，丿尸 o

given by u(r) = eL(r~ro)w(r0)- Therefore, fbr a range­

independent radial computational cell of distance Vr, we 

obtain the following s이ution simply by integration.

u{ r-\-\/r) = exp(^0VX~ 1 + V 1+ X))w( r), (6)

where X=n2-l-\---- 0진2 人 #彖)).
q(n)如 p{z) dz J

III. Propagation Operator

The performance of n니merical computation of previous 

equation (6) via the split-step solution critically depends 

on two factors: approximation of the differential operator 

X and realization of the pseudo-differential propagation 

operator exp(z^0VK-1 + V 1 + X)). In recent years, the 

Pad。approximation has been in wide spread use fbr 

calculating the propagation operator due to its accuracy 
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and numerical implementation ease.

The Pad。approximation technique is a rational poly- 

r.omial approximation using continued fractions. The 

principal advantage of the Pad6 approximation over other 

series expansions is that they provide an extension beyond 

tne bound of convergence of the series[8]. Generally, for 

serial processing, the approximation will be made in the 

fallowing multiplicative form,

-3； 由븦筈 . ⑺

丿一ill/-* 尸V

To arrive at the approximation three steps are needed. 

First, Taylor expansion of order twice that desired is used 

to equate them with the non-factorized rational polynomial. 

Then, both the numerator and denominator polynomials 
are factored into multiples of the 1st order p이ynomiaL 

Finally, we calculate the reciprocal of the coefficients with 

the opposite sign to obtain the approximation.

The Pad6 expansion method shows better performance 

in operator approximation. However, the poles arising in 

the approximation inevitably cause the singularity problem. 

So investigation of whether the pole distribution generates 

significant degradation in operator approximation needs to 

be done.

Approximation to exp( ikr( )) Approximation to exp( ikr( -1+sqrt( 1+X)))

Figure 1. Pade approximation to the exponential propagation 
operator (with 龙)V尸=2.1). Dash dotted line indicates 
the an키ytic function value and the solid line indicates 
the approximated value for the order of approxima­
tion 니 sed.
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Figure 2. Branch line controlled Pade approximation to the ex­
ponential propagation operator (with rotation angle of 

지6 and A0Vr=2.i). Dash dotted line indicates the 
analytic function vakje and the solid line indicates the 
approximated val너e for the order of approximation used.
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Unfortunately the poles are located at 为 V — 1 where the 

significant spectra of the operator exist. Since the limiting 

distribution of poles of the Pad6 sequence is congruent 

with the natural definition of the branch cut[9], the square 

root function should be appropriately defined into a single­

valued function. From the theoretical point of view, the 

physically acceptable solutions allow o이y positive 

imaginary spectrum due to the pre-defined convention of 

the spatial harmonic term, i.e. e^. The singular behavior 

of the poles lead to deterioration of the performance of 

the approximated operator thereby motivating PE developers 

to contrive a different approach to the Pad6 approximation.

The branch line controlled Pad© approximation is a kind 

of indirect calculation technique, a novel idea to avoid the 

singularity problem. First we approximate the modified 

function of which the natural branch cut is rotated by a 

certain angle. And by changing the form of the argument, 

the approximation of the original function itself can be 

reconstructed. It can be restated as the following: the 

approximations of the true values are done in rotated 

coordinate and it is transformed into those of the original 

coordinate. Such a roundabout way of computation makes 

it possible to avoid the singularity problem at the 

physically meaningful region[10].

Fig. 1 shows the comparison of the analytic function 

value approximated by the usual Pad6 method while Fig. 

2 shows the approximation results by the branch line 

controlled Pad6 method. As can be seen in the figures, 

branch line control method furnishes stable and accurate 

results even at low order of approximation. Although some 

work needs to be done in order to find an appropriate 

rotation angle, it has proven to provide more stable results 

for most cases.

IV. Depth-dependent Operator

The split-step operator will be represented in multi­

plicative form of a rational polynomial,

Xi —1 + Q（N） 

Q（N海
阳击 号 a씨 (8)

So the discretization of the operator, X, is needed to 

complete the approximate numerical split-step operator. 

Following Collins[7], projection scheme of the Galerkin 

method is adopted.

Y、Lf)疆 dz
Lf z = N 产 f

Wfdz
(9)

where Wj is a linear basis function given at z= z{. The 

method is closely connected to the FEM solution and since 

it precludes the projection of the forcing term it cannot 

guarantee the accuracy of the FEM solver. In spite of this 

deficiency, it produces a reasonable formulation of the 

operator for the heterogeneous media.

When the domain is divided into uniform elements, we 

have the following discretized formula for each term of 

equation (8).

으 （七鷲 ）,=/击［（는7 +七）d

一 （* + 3； + 3土）心+ （方 + 七）引"』（1°）

% U z=zt 저‘느T (展— 1 ++(刀 +6况 + 시+1)紿・

+ (展+1+ 展)Z&+1] (11)

V. Numerical Validation

In this section, we solve three benchmark pro미ems in 

order to validate the implemented computer algorithm 

based on the schemes outlined. They include:

1. Half space problem

2. Range-independent Pekeris wave-guide problem

3. Range-dependent problem of ASA wedge

The first problem, which has an analytic solution using 

the image method[ll], is a simple example to show the 

validity of the algorithm. The second part of the validation 

provides the solutions for a common ocean waveguide 

environment. The results will be compared with the 

solutions of OASES [12] for range-independent problem 

and RAM[4] for range-dependent problem. As for the
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Fig니re 3. Schematic of the half-space environment.

Case //•* 50 Hz
Figure 4. Sohjtions of the half space problem.

computation time, there is an increase of approximately 20 

% compared to RAM due to the rotation manipulation 

involved.

5.1. Half Space Problem
The environment is given in Fig. 3, which is self- 

explanatory.

Both the PE and the analytic solutions, shown in Fig. 

4 as a single line, coincide exactly and show the Lloyd

1OOm

free surface

50 m

cM. =1500 m/s .佗洞'心
7--------------------
source q甲= 1.0 g/cm^ I

Fluid Wave Guide

Bottom Half Space

Bottom Properties 
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Figure 5. Schematic of the Pekeris waveguide problem.

Pekeris Waveguide Problem [ Case 1 ]
-20

-30

o
 

o
 

nu

-4
-5
-6

(
띰
)
 ’L

L

-70

0 D5 1 1.5 2 2.5 3 3.5 4 4.5 5
range (km)

-70

-80

o
 

o

-5£
 由흐

Pekerls Waveguide Pr아册m [ Case 2 ]

Figure 6. Solutions of the Pekeris waveguide problem.
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mirror beam patterns for different frequencies.

5.2. Pekeris Wave-guide Problem
The Pekeris environment is given in Fig. 5. In Fig. 6, 

the OASES reference s이ution[12] is given by solid line 

and present solution is the dash-dotted line. For moderate 

bottom medium impedance contrast, the numerical spe­

cification of step increment dr is less stringent. Half 

wavelength of the acoustic wave (7.5 m in case 1 and 4 

m in case 2) was used avoiding the numerical dispersion 

successfully, as can be seen from the match of the 

solutions. As the ocean bottom impedance contrast becomes 

pronounced, due to the additional propagating modes 

occurring within the waveguide the propagation pattern 

becomes more complicated as in Case 2.

5.3. ASA Benchmark： Wedge Problem
Acoustical Society of America (ASA) provides the 

following range dependent benchmark problem[13]. The 

ASA wedge problem depicted in Fig. 7 is a representative 

example to validate the range-dependent numerical solver. 

The source frequency is 25 Hz located at the midpoint of 

the 200 m depth furthest away from the apex. The wedge 

angle is 2.86° which is representative of the sloping ocean. 

Fig. 8 shows comparison of solutions of the ASA wedge 

problem with RAM[4] and present algo血hm. In Fig. 8, Figure 8. S이utions of the ASA wedge problems (solid： reference 
by RAM, dashed line： comp나tation).

transmission losses along receivers located at depths of 30 

m and 150 m are shown. For the receiver located at 30 

m, a kink appears at the point of bottom crossover for the 

RAM solution but has disappeared in the present solution 

due to increased stability. As can be witnessed from these 

numerical solutions, the present numerical code of energy 

conservation model is seen to replicate reliable solutions.

VI. Con어tiding Remarks

We have solved the wave propagation problem in a 

range-dependent ocean environment having negligible 

back-propagating field by the parabolic equation technique.
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The out-going solution was obtained by the split-step 

integrated formulation. In order to construct the pseudo­

differential propagation operator into a feasible operator 

1he Pade approximation method was used but modified for 

more stability based on the branch line rotation method. 

As a result of the modification, the stability of the 

approximated operator can be further improved. Through 

representative benchmark tests the implemented numerical 

code was validated.
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