• 제목/요약/키워드: operator condition

검색결과 462건 처리시간 0.027초

LERAY-SCHAUDER DEGREE THEORY APPLIED TO THE PERTURBED PARABOLIC PROBLEM

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • 제17권2호
    • /
    • pp.219-231
    • /
    • 2009
  • We show the existence of at least four solutions for the perturbed parabolic equation with Dirichlet boundary condition and periodic condition when the nonlinear part cross two eigenvalues of the eigenvalue problem of the Laplace operator with boundary condition. We obtain this result by using the Leray-Schauder degree theory, the finite dimensional reduction method and the geometry of the mapping. The main point is that we restrict ourselves to the real Hilbert space instead of the complex space.

  • PDF

SOME REMARKS ON THE HELTON CLASS OF AN OPERATOR

  • Kim, In-Sook;Kim, Yoen-Ha;Ko, Eun-Gil;Lee, Ji-Eun
    • 대한수학회보
    • /
    • 제46권3호
    • /
    • pp.535-543
    • /
    • 2009
  • In this paper we study some properties of the Helton class of an operator. In particular, we show that the Helton class preserves the quasinilpotent property and Dunford's boundedness condition (B). As corollaries, we get that the Helton class of some quadratically hyponormal operators or decomposable subnormal operators satisfies Dunford's boundedness condition (B).

ON THE STRUCTURE JACOBI OPERATOR AND RICCI TENSOR OF REAL HYPERSURFACES IN NONFLAT COMPLEX SPACE FORMS

  • Kim, Soo-Jin
    • 호남수학학술지
    • /
    • 제32권4호
    • /
    • pp.747-761
    • /
    • 2010
  • It is known that there are no real hypersurfaces with parallel structure Jacobi operator $R_{\xi}$ (cf.[16], [17]). In this paper we investigate real hypersurfaces in a nonflat complex space form using some conditions of the structure Jacobi operator $R_{\xi}$ which are weaker than ${\nabla}R_{\xi}$ = 0. Under further condition $S\phi={\phi}S$ for the Ricci tensor S we characterize Hopf hypersurfaces in a complex space form.

OPERATOR DOMAINS ON FUZZY SUBGROUPS

  • Kim, Da-Sig
    • 대한수학회논문집
    • /
    • 제16권1호
    • /
    • pp.75-83
    • /
    • 2001
  • The various fuzzy subgroups of a group which are admissible under operator domains are studied. In particular, the classes of all inner automorphisms, automorphisms, and endomorphisms are applied on the fuzzy subgroups of a group. As results, several theorems and examples concerning the fuzzy subgroups following from these kinds of operator domains are obtained. Moreover, we prove that a necessary condition for a fuzzy subgroup to be characteristic is that the center of the fuzzy subgroup is characteristic.

  • PDF

Rank-preserver of Matrices over Chain Semiring

  • Song, Seok-Zun;Kang, Kyung-Tae
    • Kyungpook Mathematical Journal
    • /
    • 제46권1호
    • /
    • pp.89-96
    • /
    • 2006
  • For a rank-1 matrix A, there is a factorization as $A=ab^t$, the product of two vectors a and b. We characterize the linear operators that preserve rank and some equivalent condition of rank-1 matrices over a chain semiring. We also obtain a linear operator T preserves the rank of rank-1 matrices if and only if it is a form (P, Q, B)-operator with appropriate permutation matrices P and Q, and a matrix B with all nonzero entries.

  • PDF

INEQUALITIES OF OPERATOR VALUED QUANTUM SKEW INFORMATION

  • Choi, Byoung Jin;Lee, Mi Ra
    • 대한수학회보
    • /
    • 제58권1호
    • /
    • pp.59-70
    • /
    • 2021
  • In this paper, we study two operator-valued inequalities for quantum Wigner-Yanase-Dyson skew information related to module operators. These are extended results of the trace inequalities for Wigner-Yanase-Dyson skew information. Moreover, we study a sufficient condition to prove an uncertainty relation for operator-valued generalized quantum Wigner-Yanase-Dyson skew information related to module operators and a pair of functions (f, g). Also, we obtain several previous results of scalar-valued cases as a consequence of our main result.

Development and evaluation of modified lead gloves to reduce hand radiation dose during interventional radiological procedures

  • Hyun-Jun Park;Byungdu Jo;Seung-Jae Lee
    • Nuclear Engineering and Technology
    • /
    • 제56권7호
    • /
    • pp.2781-2789
    • /
    • 2024
  • We developed lead gloves that minimize radiation dose to the operator's hands during interventional radiological procedures and that do not impede the operator's surgical capabilities. Existing lead gloves can protect the operator's hands by shielding radiation, but use of such gloves may impair preception sensitivity, resulting in a reduction in the operator's surgical ability. Accordingly, in this study, we developed modified lead gloves that can reduce radiation dose while maintaining operator sensitivity during procedures by modifying the operator's main surgical finger area in existing lead gloves. To evaluate the performance of developed modified lead gloves, radiation was applied in surgical conditions without gloves and with surgical gloves, lead gloves, and modified lead gloves. The radiation dose was evaluated for each condition. When the modified lead gloves were worn, the degree of shielding was similar to when conventional lead gloves were worn. Based on these results, if the operator wears modified lead gloves during interventional radiological procedures, they will protect the hands from radiation while maintaining physical sensitivity in the hands.

GENERALIZED BROWDER, WEYL SPECTRA AND THE POLAROID PROPERTY UNDER COMPACT PERTURBATIONS

  • Duggal, Bhaggy P.;Kim, In Hyoun
    • 대한수학회지
    • /
    • 제54권1호
    • /
    • pp.281-302
    • /
    • 2017
  • For a Banach space operator $A{\in}B(\mathcal{X})$, let ${\sigma}(A)$, ${\sigma}_a(A)$, ${\sigma}_w(A)$ and ${\sigma}_{aw}(A)$ denote, respectively, its spectrum, approximate point spectrum, Weyl spectrum and approximate Weyl spectrum. The operator A is polaroid (resp., left polaroid), if the points $iso{\sigma}(A)$ (resp., $iso{\sigma}_a(A)$) are poles (resp., left poles) of the resolvent of A. Perturbation by compact operators preserves neither SVEP, the single-valued extension property, nor the polaroid or left polaroid properties. Given an $A{\in}B(\mathcal{X})$, we prove that a sufficient condition for: (i) A+K to have SVEP on the complement of ${\sigma}_w(A)$ (resp., ${\sigma}_{aw}(A)$) for every compact operator $K{\in}B(\mathcal{X})$ is that ${\sigma}_w(A)$ (resp., ${\sigma}_{aw}(A)$) has no holes; (ii) A + K to be polaroid (resp., left polaroid) for every compact operator $K{\in}B(\mathcal{X})$ is that iso${\sigma}_w(A)$ = ∅ (resp., $iso{\sigma}_{aw}(A)$ = ∅). It is seen that these conditions are also necessary in the case in which the Banach space $\mathcal{X}$ is a Hilbert space.