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Abstract. We classify real hypersurfaces in complex projective space whose structure

Jacobi operator satisfies a certain cyclic condition.

1. Introduction

Let CPm, m ≥ 3, be a complex projective space endowed with the metric g of
constant holomorphic sectional curvature 4. Let M be a connected real hypersur-
face of CPm without boundary. Let J denote the complex structure of CPm and
N a locally defined unit normal vector field on M . Then −JN = ξ is a tangent
vector field to M called the structure vector field on M . We also call D the maximal
holomorphic distribution on M , that is, the distribution on M given by all vectors
orthogonal to ξ at any point of M .

The study of real hypersurfaces in nonflat complex space forms is a classical
topic in Differential Geometry. The classification of homogeneous real hypersurfaces
in CPm was obtained by Takagi, see [14], [15], [16], and is given by the following list:
A1 : Geodesic hyperspheres. A2 : Tubes over totally geodesic complex projective
spaces. B : Tubes over complex quadrics and RPm. C : Tubes over the Segre
embedding of CP 1xCPn, where 2n + 1 = m and m ≥ 5. D : Tubes over the
Plucker embedding of the complex Grassmann manifold G(2, 5). In this case m =
9. E : Tubes over the cannonical embedding of the Hermitian symmetric space
SO(10)/U(5). In this case m = 15.

Other examples of real hypersurfaces are ruled real ones, that were introduced
by Kimura, [5]: Take a regular curve γ in CPm with tangent vector field X. At each
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point of γ there is a unique complex projective hyperplane cutting γ so as to be
orthogonal not only to X but also to JX. The union of these hyperplanes is called
a ruled real hypersurface. It will be an embedded hypersurface locally although
globally it will in general have self-intersections and singularities. Equivalently a
ruled real hypersurface is such that D is integrable or g(AD, D) = 0, where A
denotes the shape operator of the immersion. For further examples of ruled real
hypersurfaces see [7].

Except these real hypersurfaces there are very few examples of real hypersurfaces
in CPn.

On the other hand, Jacobi fields along geodesics of a given Riemannian man-
ifold (M̃, g̃) satisfy a very well-known differential equation. This classical differ-
ential equation naturally inspires the so-called Jacobi operator. That is, if R̃ is
the curvature operator of M̃ , and X is any tangent vector field to M̃ , the Ja-
cobi operator (with respect to X) at p ∈ M , R̃X ∈End(TpM̃), is defined as
(R̃XY )(p) = (R̃(Y, X)X)(p) for all Y ∈ TpM̃ , being a selfadjoint endomorphism
of the tangent bundle TM̃ of M̃ . Clearly, each tangent vector field X to M̃ pro-
vides a Jacobi operator with respect to X.

The study of Riemannian manifolds by means of their Jacobi operators has been
developed following several ideas. For instance, in [1], it is pointed out that (locally)
symmetric spaces of rank 1 (among them complex space forms) satisfy that all the
eigenvalues of R̃X have constant multiplicities and are independent of the point and
the tangent vector X.

Let M be a real hypersurface in a complex projective space and let ξ be the
structure vector field on M . We will call the Jacobi operator on M with respect
to ξ the structure Jacobi operator on M . Then the structure Jacobi operator
Rξ ∈ End(TpM) is given by (Rξ(Y ))(p) = (R(Y, ξ)ξ)(p) for any Y ∈ TpM , p ∈ M ,
where R denotes the curvature operator of M in CPm. Some papers devoted to
study several conditions on the structure Jacobi operator of a real hypersurface in
CPm are [2], [3], [4].

Recently, [9], we have proved the non-existence of real hypersurfaces in CPm

with parallel structure Jacobi operator. Also in [10], [11], [12], [13] we have stud-
ied distinct conditions on the structure Jacobi operator (Lie parallelism, Lie ξ-
parallelism, D-parallelism, and so on).

For any vector fields X, Y tangent to M , R(X, Y ) operates as a derivation on
the algebra of tensor fields on M . For a tensor field F of type (r, s), R(X, Y ).F =
∇X∇Y F −∇Y∇XF −∇[X,Y ]F . In the case of F = Rξ, we get (R(X, Y ).Rξ)Z =
R(X, Y )(Rξ(Z))−Rξ(R(X, Y )Z), for any X, Y, Z tangent to M .

The purpose of the present paper is to study a weaker condition than structure
Jacobi operator being parallel for a real hypersurface of CPm. In fact we will study
the condition

(1.1) (R(X, Y ).Rξ)Z + (R(Y, Z).Rξ)X + (R(Z,X).Rξ)Y = 0

for any X, Y, Z tangent to M . Due to the literature we propose to call them real
hypersurfaces with cyclic-Ryan parallel structure Jacobi operator.
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We will obtain the following

Theorem. Let M be a real hypersurface of CPm, m ≥ 3. Then M has cyclic-Ryan
parallel structure Jacobi operator if and only if M is locally congruent either to a
geodesic hypersphere or to a tube of radius π/4 over a complex submanifold in CPm.

2. Preliminaries

Thoughout this paper, all manifolds, vector fields, etc., will be considered of
class C∞ unless otherwise stated. Let M be a connected real hypersurface in CPm,
m ≥ 2, without boundary. Let N be a locally defined unit normal vector field on
M . Let ∇ be the Levi-Civita connection on M and (J, g) the Kaehlerian structure
of CPm.

For any vector field X tangent to M we write JX = φX+η(X)N , and−JN = ξ.
Then (φ, ξ, η, g) is an almost contact metric structure on M . That is, we have

(2.1) φ2X = −X + η(X)ξ, η(ξ) = 1, g(φX, φY ) = g(X, Y )− η(X)η(Y )

for any tangent vectors X, Y to M . From (2.1) we obtain

(2.2) φξ = 0, η(X) = g(X, ξ).

From the parallelism of J we get

(2.3) (∇Xφ)Y = η(Y )AX − g(AX, Y )ξ

and

(2.4) ∇Xξ = φAX

for any X, Y tangent to M , where A denotes the shape operator of the immersion.
As the ambient space has holomorphic sectional curvature 4, the equations of Gauss
and Codazzi are given, respectively, by

R(X, Y )Z = g(Y,Z)X − g(X, Z)Y + g(φY,Z)φX − g(φX, Z)φY(2.5)
−2g(φX, Y )φZ + g(AY,Z)AX − g(AX, Z)AY,

and

(2.6) (∇XA)Y − (∇Y A)X = η(X)φY − η(Y )φX − 2g(φX, Y )ξ

for any tangent vectors X, Y, Z to M , where R is the curvature tensor of M .
In the sequel we need the following results:

Theorem 2.1 ([6]). A real hypersurface M of CPm, m ≥ 3 satisfies R(X, Y )AZ +
R(Y,Z)AX + R(Z,X)AY = 0, for any X, Y, Z tangent to M if and only if it is
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locally congruent to a geodesic hypersphere.

Theorem 2.1 ([9]. There exist no real hypersurfaces M in CPm, m ≥ 3, such that
the shape operator is given by Aξ = ξ + βU , AU = βξ + (β2 − 1)U , AφU = −φU ,
AX = −X, for any tangent vector X orthogonal to Span{ξ, U, φU}, where U is a
unit vector field in D and β is a nonvanishig smooth function defined on M .

3. Proof of the theorem

Bearing in mind Bianchi identity, (1.1) is equivalent to have R(X, Y )(Rξ(Z))+
R(Y, Z) (Rξ(X)) + R(Z,X)(Rξ(Y )) = 0. As Rξ(Z) = Z − g(Z, ξ)ξ + g(Aξ, ξ)AZ −
g(AZ, ξ)Aξ, we get R(X, Y )(Rξ(Z)) = R(X, Y )Z − g(Z, ξ)R(X, Y )ξ + g(Aξ, ξ)
R(X, Y )AZ − g(AZ, ξ) R(X, Y )Aξ. So our condition is equivalent to −g(Z, ξ)
R(X, Y )ξ−g(X, ξ)R(Y,Z)ξ−g(Y, ξ)R(Z,X)ξ+g(Aξ, ξ)[R(X, Y )AZ+R(Y, Z)AX+
R(Z,X)AY ]−g(AZ, ξ)R(X, Y ) Aξ−g(AY, ξ)R(Z,X)Aξ−g(AX, ξ)R(Y,Z)Aξ = 0.
From Gauss equation we obtain

−g(Z, ξ)(g(AY, ξ)AX − g(AX, ξ)AY )− g(X, ξ)(g(AZ, ξ)AY − g(AY, ξ)AZ)(3.1)
−g(Y, ξ)(g(AX, ξ)AZ − g(AZ, ξ)AX) + g(Aξ, ξ)(g(φY,AZ)φX

−g(φX, AZ)φY − 2g(φX, Y )φAZ + g(φZ, AX)φY − g(φY,AX)φZ

−2g(φY,Z)φAX + g(φX, AY )φZ − g(φZ, AY )φX − 2g(φZ, X)φAY )
−g(AZ, ξ)(g(φY,Aξ)φX − g(φX, Aξ)φY − 2g(φX, Y )φAξ

+g(AY,Aξ)AX − g(AX, Aξ)AY )− g(AX, ξ)(g(φZ, Aξ)φY − g(φY,Aξ)φZ

−2g(φY,Z)φAξ + g(AZ,Aξ)AY − g(AY, Aξ)AZ)− g(AY, ξ)(g(φX, Aξ)φZ

−g(φZ, Aξ)φX − 2g(φZ, X)φAξ + g(AX, Aξ)AZ − g(AZ,Aξ)AX) = 0

for any X, Y, Z tangent to M . First we suppose that M is Hopf, that is, Aξ = αξ,
for a certain function α. Then (3.1) becomes

(3.2) α(R(X, Y )AZ + R(Y, Z)AX + R(Z,X)AY ) = 0

for any X, Y, Z tangent to M . Thus if α 6= 0, R(X, Y )AZ + R(Y,Z)AX +
R(Z,X)AY = 0. From Theorem 2.1, M must be locally congruent to a geodesic
hypersphere. If α = 0, then M is locally congruent to a tube of radius π/4 over a
complex submanifold of CPm.

From now on we suppose that M is not Hopf. Thus locally we can write
Aξ = αξ + βU , where U is a unit vector field in D and β a nonnull function.
Introducing this expression into (3.1) we get

−βg(Z, ξ)(g(Y, U)AX − g(X, U)AY )− βg(X, ξ)(g(Z,U)AY − g(Y, U)AZ)(3.3)
−βg(Y, ξ)(g(X, U)AZ − g(Z,U)AX) + α(g((Aφ + φA)Y, Z)φX

−2g(φY,Z)φAX + g((Aφ + φA)Z,X)φY − 2g(φZ, X)φAY
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+g((Aφ + φA)X, Y )φZ − 2g(φX, Y )φAZ)− g(AZ, ξ)
(βg(φY,U)φX − βg(φX, U)φY − 2βg(φX, Y )φU

+g(AY, Aξ)AX − g(AX, Aξ)AY )− g(AX, ξ)(βg(φZ, U)φY

−βg(φY,U)φZ − 2βg(φY,Z)φU + g(AZ,Aξ)AY

−g(AY, Aξ)AZ)− g(AY, ξ)(βg(φX, U)φZ − βg(φZ, U)φX

−2βg(φZ, X)φU + g(AX, Aξ)AZ − g(AZ,Aξ)AX) = 0

for any X, Y, Z tangent to M . From now on we will call DU the subspace of TM
orthogonal to the subspace spanned by ξ, U, φU . Taking Z = ξ, Y = U , X = φU
in (3.3) we obtain βg(AφU, U) = 0. Thus

(3.4) g(AU, φU) = 0.

Taking Z = ξ, Y = U , X ∈ DU in (3.3) we have

(3.5) g(AU,X) = 0

for any X ∈ DU . From(3.4) and (3.5) we obtain AU = βξ + g(AU,U)U . If we take
Z = U , Y = φU , X ∈ DU in (3.3) we get −αg(AU,U)φX − αg(AφU, φU)φX +
2αφAX − αg(AφU, X)U + αg(AφX, φU)φU + β2φX = 0. If α = 0 this yields
β2φX = 0 which is impossible. Thus α 6= 0. Taking the scalar product with φU ,

(3.6) g(AφX, φU) = 0

for any X ∈ DU . Thus φU is principal and the above expression reduces to
−αg(AU,U) φX − αg(AφU, φU)φX + 2αφAX + β2φX = 0, for any X ∈ DU . If
we apply φ we obtain αg(AU,U)X + αg(AφU, φU)X − 2αAX − β2X = 0 for any
X ∈ DU . It follows

(3.7) AX = ((g(AU,U) + g(AφU, φU))/2)− (β2/2α))X

for any X ∈ DU . If we take X ∈ DU , Y = φX, Z = U in (3.3) and its scalar
product with φU we get

(3.8) α(g(AφX, φX) + g(AX, X)− 2g(AU,U)) + 2β2 = 0

for any X ∈ DU . From (3.7) and (3.8) we obtain

(3.9) g(AU,U) = g(AφU, φU) + (β2/α).

Taking X ∈ DU , Y = φX, Z = φU in (3.3) and its scalar product with U it follows

(3.10)
g(AφU, φU) = g(AX, X),

g(AU,U) = g(AX, X) + (β2/α)
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for any X ∈ DU . If we call AφU = γφU , then g(AU,U) = γ + (β2/α).
Consider two orthonormal vector fields X, Y ∈ DU . Codazzi equation gives

(∇XA)Y − (∇Y A)X = −2g(φX, Y )ξ. That is, X(γ)Y − Y (γ)X + γ[X, Y ] −
A[X, Y ] = −2g(φX, Y )ξ. Taking the scalar product of this expression and ξ we
get

(3.11) (γ − α)g([X, Y ], ξ)− βg([X, Y ], U) = −2g(φX, Y ).

And its scalar product with U gives

(3.12) αg([X, Y ], ξ) + βg([X, Y ], U) = 0.

As g([X, Y ], ξ) = g(X,∇Y ξ)−g(Y,∇Xξ) = g(X, φAY )−g(Y, φAX) = −2γg(φX, Y ),
from (3.11) and (3.12) we have

(3.13) γ2 = 1.

Now if we take X ∈ DU , Y = U , Z = ξ in (3.3) we obtain (1 + γα)βγX = 0. This
yields

(3.14) 1 + αγ = 0.

From (3.13) and (3.14) we have two possibilities: i) γ = −1, α = 1 or ii) γ = 1,
α = −1.

From Theorem 2.2 case i) cannot occur. So we consider case ii), that is, Aξ =
−ξ + βU , AU = βξ + (1 − β2)U , AφU = U , AX = X, for any X ∈ DU . Take
X ∈ DU . Codazzi equation gives (∇XA)U − (∇UA)X = 0. This yields X(β)ξ +
βφX + X(1 − β2)U + (1 − β2)∇XU − A∇XU − ∇UX + A∇UX = 0. Taking the
scalar product of this equality and U we get

(3.15) g(∇UU,X) = 2X(β)/β,

and the scalar product with ξ yields

(3.16) g(∇UU,X) = X(β)/β.

From (3.15) and (3.16) we get

(3.17) X(β) = 0

for any X ∈ DU . The scalar product of the above expression and X gives

(3.18) g(∇XU,X) = 0

for any X ∈ DU .
If we develop (∇X+UA)ξ − (∇ξA)(X + U) = −φX − φU and take its scalar

product with X ∈ DU we obtain βg(∇XU,X) + βg(∇UU,X) + β2g(∇ξU,X) = 0.
From (3.17) and (3.18) this yields

(3.19) g(∇ξU,X) = 0
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for any X ∈ DU .
Developing (∇X+φUA)ξ − (∇ξA)(X + φU) = −φX + U and taking its scalar

product with U , bearing in mind (3.17), (3.18) and (3.19) we have

(3.20) (φU)(β) + (1− 2β2)− β2g(∇ξφU, U) = 0.

and taking its scalar product with ξ it follows

(3.21) g(∇ξφU, U) = −4.

From (3.20) and (3.21) we get

(3.22) (φU)(β) = −(2β2 + 1).

If we develop (∇UA)ξ − (∇ξA)U = −φU and take its scalar product with U we
obtain

(3.23) U(β) = −2βξ(β)

and its scalar product with ξ gives

(3.24) ξ(β) = 0.

From (3.17), (3.22), (3.23) and (3.24) we get

(3.25) grad(β) = −(2β2 + 1)φU.

Thus∇Xgrad(β) = −4βX(β)φU−(2β2+1)∇XφU for any X tangent to M . There-
fore, for any Y tangent to M we have g(∇Xgrad(β), Y ) = −4βX(β)g(φU, Y ) −
(2β2 + 1)g(∇XφU, Y ). Thus g(∇Xgrad(β), Y ) − g(∇Y grad(β), X) = 4β(Y (β)
g(φU,X)−X(β)g(φU, Y )) + (2β2 + 1)(g(∇Y φU, X)− g(∇XφU, Y )).

As g(∇Xgrad(β), Y )− g(∇Y grad(β), X) = 0, it follows

4β(Y (β)g(φU, X)−X(β)g(φU, Y ))(3.26)
+ (2β2 + 1)(g(∇Y φU, X)− g(∇XφU, Y )) = 0

for any X, Y tangent to M . Taking Y = ξ in (3.26), for any X tangent to M we
get g(∇ξφU, X) = g(∇XφU, ξ). Taking X = U we get

(3.27) g(∇ξφU, U) = β2 − 1.

From (3.21) and (3.27) we obtain β2 = −3, which is impossible, finishing the proof.
As a consequence we obtain

Corollary 3.1. There exist no real hypersurfaces in CPm, m ≥ 3 satisfying R.Rξ =
0.

Proof. As this condition implies that M has cyclic-Ryan parallel structure Jacobi
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operator, it must be Hopf. So Aξ = αξ. Then if we develop Rξ(R(X, ξ)ξ) = 0, with
X ∈ D such that AX = λX, we get

(3.28) α2λ2 + 2αλ + 1 = 0.

If α = 0, (3.28) gives a contradiction. Thus M must be locally congruent to a
geodesic hypersphere. In this case, α = 2cot(2r), λ = cot(r), r 6= π/4, 0 < r < π/2.
Thus (3.28) does not hold and we finish the proof. �
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