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ABSTRACT. We classify real hypersurfaces in complex projective space whose structure
Jacobi operator satisfies a certain cyclic condition.

1. Introduction

Let CP™, m > 3, be a complex projective space endowed with the metric g of
constant holomorphic sectional curvature 4. Let M be a connected real hypersur-
face of CP™ without boundary. Let J denote the complex structure of CP™ and
N a locally defined unit normal vector field on M. Then —JN = £ is a tangent
vector field to M called the structure vector field on M. We also call D the maximal
holomorphic distribution on M, that is, the distribution on M given by all vectors
orthogonal to £ at any point of M.

The study of real hypersurfaces in nonflat complex space forms is a classical
topic in Differential Geometry. The classification of homogeneous real hypersurfaces
in CP™ was obtained by Takagi, see [14], [15], [16], and is given by the following list:
A; : Geodesic hyperspheres. A, : Tubes over totally geodesic complex projective
spaces. B : Tubes over complex quadrics and RP™. C' : Tubes over the Segre
embedding of CP'xCP", where 2n +1 = m and m > 5. D : Tubes over the
Plucker embedding of the complex Grassmann manifold G(2,5). In this case m =
9. E : Tubes over the cannonical embedding of the Hermitian symmetric space
SO(10)/U(5). In this case m = 15.

Other examples of real hypersurfaces are ruled real ones, that were introduced
by Kimura, [5]: Take a regular curve v in CP™ with tangent vector field X. At each
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point of v there is a unique complex projective hyperplane cutting v so as to be
orthogonal not only to X but also to JX. The union of these hyperplanes is called
a ruled real hypersurface. It will be an embedded hypersurface locally although
globally it will in general have self-intersections and singularities. Equivalently a
ruled real hypersurface is such that I is integrable or g(AD,D) = 0, where A
denotes the shape operator of the immersion. For further examples of ruled real
hypersurfaces see [7].

Except these real hypersurfaces there are very few examples of real hypersurfaces
in CP™.

On the other hand, Jacobi fields along geodesics of a given Riemannian man-
ifold (M, §) satisfy a very well-known differential equation. This classical differ-
ential equation naturally inspires the so-called Jacobi operator. That is, if R is
the curvature operator of M, and X is any tangent vector field to M, the Ja-
cobi operator (with respect to X) at p € M, Rx EEnd(Tp]\ZI')7 is defined as
(RxY)(p) = (R(Y,X)X)(p) for all Y € T, M, being a selfadjoint endomorphism
of the tangent bundle TM of M. Clearly, each tangent vector field X to M pro-
vides a Jacobi operator with respect to X.

The study of Riemannian manifolds by means of their Jacobi operators has been
developed following several ideas. For instance, in [1], it is pointed out that (locally)
symmetric spaces of rank 1 (among them complex space forms) satisfy that all the
eigenvalues of Rx have constant multiplicities and are independent of the point and
the tangent vector X.

Let M be a real hypersurface in a complex projective space and let £ be the
structure vector field on M. We will call the Jacobi operator on M with respect
to & the structure Jacobi operator on M. Then the structure Jacobi operator
Re € End(T,M) is given by (Re(Y))(p) = (R(Y,£)€)(p) for any ¥ € T,M, p € M,
where R denotes the curvature operator of M in CP™. Some papers devoted to
study several conditions on the structure Jacobi operator of a real hypersurface in
CP™ are [2], [3], [4].

Recently, [9], we have proved the non-existence of real hypersurfaces in CP™
with parallel structure Jacobi operator. Also in [10], [11], [12], [13] we have stud-
ied distinct conditions on the structure Jacobi operator (Lie parallelism, Lie &-
parallelism, D-parallelism, and so on).

For any vector fields X, Y tangent to M, R(X,Y’) operates as a derivation on
the algebra of tensor fields on M. For a tensor field F' of type (r,s), R(X,Y).F =
VxVyF —VyVxF —Vxy)F. In the case of F' = R, we get (R(X,Y).R¢)Z =
R(X,Y)(Re(2)) — Re(R(X,Y)Z), for any X,Y, Z tangent to M.

The purpose of the present paper is to study a weaker condition than structure
Jacobi operator being parallel for a real hypersurface of CP™. In fact we will study
the condition

(1.1) (R(X,Y).Re)Z + (R(Y, Z).Re)X + (R(Z,X).Re)Y =0

for any X,Y, Z tangent to M. Due to the literature we propose to call them real
hypersurfaces with cyclic-Ryan parallel structure Jacobi operator.
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We will obtain the following

Theorem. Let M be a real hypersurface of CP™, m > 3. Then M has cyclic-Ryan
parallel structure Jacobi operator if and only if M is locally congruent either to a
geodesic hypersphere or to a tube of radius 7/4 over a complex submanifold in CP™.

2. Preliminaries

Thoughout this paper, all manifolds, vector fields, etc., will be considered of
class C*° unless otherwise stated. Let M be a connected real hypersurface in CP™,
m > 2, without boundary. Let N be a locally defined unit normal vector field on
M. Let V be the Levi-Civita connection on M and (J, g) the Kaehlerian structure
of CP™.

For any vector field X tangent to M we write JX = ¢X+n(X)N, and —JN = &.
Then (¢,&,7,9g) is an almost contact metric structure on M. That is, we have

(21)  @P*X=-X+nX)E =1, g¢X,¢Y)=g(X,Y)—nX)nY)

for any tangent vectors X,Y to M. From (2.1) we obtain

(2.2) P6 =0, n(X)=g(X,9).

From the parallelism of J we get

(2.3) (Vx9)Y =n(Y)AX — g(AX,Y){
and
(2.4) Vxé=0pAX

for any X,Y tangent to M, where A denotes the shape operator of the immersion.
As the ambient space has holomorphic sectional curvature 4, the equations of Gauss
and Codazzi are given, respectively, by

(25) RX\)Y)Z = g(Y.Z)X —g(X,2)Y + g(¢Y, Z)¢X — g(¢X, Z)pY
~29(X,Y)$Z + g(AY. Z)AX — g(AX, Z)AY,

and

(2.6) (VxA)Y — (Vy A)X =n(X)oY —n(Y)oX — 29(¢X,Y)¢

for any tangent vectors X, Y, Z to M, where R is the curvature tensor of M.
In the sequel we need the following results:

Theorem 2.1 ([6]). A real hypersurface M of CP™, m > 3 satisfies R(X,Y)AZ+
R(Y,Z)AX + R(Z,X)AY = 0, for any X,Y,Z tangent to M if and only if it is
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locally congruent to a geodesic hypersphere.

Theorem 2.1 ([9]. There exist no real hypersurfaces M in CP™, m > 3, such that
the shape operator is given by A = &+ BU, AU = B+ (8% — 1)U, ApU = —oU,
AX = =X, for any tangent vector X orthogonal to Span{&,U, pU}, where U is a
unit vector field in D and B is a nonvanishig smooth function defined on M.

3. Proof of the theorem

Bearing in mind Bianchi identity, (1.1) is equivalent to have R(X,Y)(R¢(Z)) +
R(Y, Z) (Re(X)) + R(Z, X)(Re(Y)) = 0. As Re(Z) = 7 — g(Z, )¢ + g( A€, ) AZ —
G(AZ,€)AE, we get R(X,Y)(Re(Z)) = R(X,Y)Z — g(Z,R(X,Y)E + g(AE,€)
R(X,Y)AZ — g(AZ, &) R(X,Y)AE. So our condition is equivalent to —g(Z, &)
R(X,Y)E—g(X, O R(Y, 2)6—g(Y, ) R(Z, X)§+9(AE, [R(X,Y)AZ+R(Y, Z)AX +
R(Z, X)AY]—g(AZ.)R(X,Y) A —g(AY, ) R(Z, X) A — g(AX, &) R(Y, Z)AE = 0.
From Gauss equation we obtain

(3.1) —g(Z,)(9(AY,§)AX — g(AX,§)AY) — (X, §)(9(AZ,§)AY — g(AY,§)AZ)

—9(Y,€)(9(AX,§)AZ — g(AZ,§) AX) + g(AE, §)(g(oY, AZ)pX

—g(pX, AZ)pY — 29(¢X,Y)PAZ + g(¢Z, AX )Y — g(oY, AX)pZ
—29(9Y, Z2)pAX + g(¢X, AY)¢Z — g(¢Z, AY )¢ X — 29(¢Z, X)pAY)
—9(AZ,§)(g9(9Y, A§)d X — g(¢ X, A)PY — 29(¢X,Y)pAL
+9(AY, AAX — g(AX, A AY) — g(AX, ) (g(9Z, AS)pY — g(9Y, A§)pZ
—29(9Y, Z)pAE + g(AZ, A AY — g(AY, A§AZ) — g(AY,§)(9(9X, A&)pZ
~9(¢Z, AE)pX — 29(¢Z, X)pAL + g(AX, A§AZ — g(AZ, A )AX) =0

for any XY, Z tangent to M. First we suppose that M is Hopf, that is, A = &,
for a certain function .. Then (3.1) becomes

(3.2) a(R(X,Y)AZ + R(Y, Z)AX + R(Z,X)AY) = 0

for any X,Y,Z tangent to M. Thus if a # 0, R(X,Y)AZ + R(Y,Z)AX +
R(Z,X)AY = 0. From Theorem 2.1, M must be locally congruent to a geodesic
hypersphere. If o = 0, then M is locally congruent to a tube of radius /4 over a
complex submanifold of CP™.

From now on we suppose that M is not Hopf. Thus locally we can write
A¢ = a€ + PU, where U is a unit vector field in D and S a nonnull function.
Introducing this expression into (3.1) we get

(3:3) =B9(2,6)(g(Y,U)AX — g(X,U)AY) = Bg(X,£)(9(2, U)AY — g(Y,U)AZ)
—PBg(Y,6)(9(X,U)AZ = g(Z,U)AX) + a(g((A¢ + 9A)Y, Z)pX
—29(¢Y, Z)pAX + g((Ap + ¢A) Z, X )oY — 29(¢Z, X)pAY
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+9((Ap + ¢A) X, Y)90Z — 29(0X,Y)pAZ) — g(AZ,§)
(Bg(¢Y, U)o X — Bg(¢X,U)pY —289(¢X,Y)oU
+9(AY, A AX — g(AX, AL AY') — g(AX,§)(Bg(0Z,U)oY
—Bg(eY,U)¢Z — 289(¢Y, Z)$U + g(AZ, AG)AY
—g(AY, A AZ) — g(AY,&)(Bg(¢X,U)pZ — Bg(¢Z,U)pX
—28g(0Z, X)pU + g(AX, A)AZ — g(AZ, AE)AX) =0
for any X,Y, Z tangent to M. From now on we will call Dy the subspace of TM

orthogonal to the subspace spanned by &, U, ¢U. Taking Z =&, Y =U, X = ¢U
in (3.3) we obtain 8g(A¢U,U) = 0. Thus

(3.4) g(AU, ¢U) = 0.

Taking Z =¢,Y =U, X € Dy in (3.3) we have

(3.5) g(AU, X)) =0

for any X € Dy. From(3.4) and (3.5) we obtain AU = 8¢+ g(AU,U)U. If we take
Z=U,Y =¢U, X € Dy in (3.3) we get —ag(AU,U)¢pX — ag(AsU, oU)pX +
200AX — ag(ApU, X)U + ag(ApX,¢U)pU + B%¢X = 0. If a = 0 this yields
32¢X = 0 which is impossible. Thus o # 0. Taking the scalar product with ¢U,
(3.6) 9(ApX,¢U) =0

for any X € Dy. Thus ¢U is principal and the above expression reduces to
—ag(AU,U) ¢X — ag(AsU, U)X + 2apAX + 32¢X = 0, for any X € Dy. If
we apply ¢ we obtain ag(AU, U)X + ag(A¢U, pU)X — 2aAX — 32X = 0 for any
X € Dy. It follows

3.7) AX = ((9(AU,U) + (AU, ¢U))/2) — (3% /20)) X

for any X € Dy. If we take X € Dy, Y = ¢X, Z = U in (3.3) and its scalar
product with ¢U we get

(3.8) a(g(AeX, X) + g(AX, X) — 2g(AU,U)) + 262 =0

for any X € Dy. From (3.7) and (3.8) we obtain

(3.9) 9(AU,U) = g(AgU, ¢U) + (5° /).

Taking X € Dy, Y = ¢X, Z = ¢U in (3.3) and its scalar product with U it follows

9(AgU, ¢U) = g(AX, X),

(3.10) 9(AU,U) = g(AX, X) + (8?/ax)
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for any X € Dy. If we call ApU = U, then g(AU,U) = v + (5%/a).
Consider two orthonormal vector fields X,Y € Dy. Codazzi equation gives
(VxA)Y — (VyAX = —2g(¢X,Y)¢. That is, X(7)Y — Y(1)X +~[X,Y] -

AX,)Y] = —2¢(¢X,Y)E. Taking the scalar product of this expression and £ we
get
(3.11) (v —a)g([X,Y],€) — Bg([X,Y],U) = —29(¢X,Y).

And its scalar product with U gives
(3.12) ag([X,Y],€) + By([X,Y],U) = 0.

from (3.11) and (3.12) we have

(3.13) 2 = 1.

Now if we take X € Dy, Y =U, Z = ¢ in (3.3) we obtain (1 + ya)ByX = 0. This
yields

(3.14) 1+ay=0.

From (3.13) and (3.14) we have two possibilities: i) v = =1, a = 1 or ii) v = 1,
a=—1.

From Theorem 2.2 case i) cannot occur. So we consider case ii), that is, A =
£+ pU, AU = B¢+ (1 — B2)U, ApU = U, AX = X, for any X € Dy. Take
X € Dy. Codazzi equation gives (VxA)U — (VyA)X = 0. This yields X (5)€ +
BdX + X (1 —pHU + (1 — 3?)VxU — AVxU — VyX + AVy X = 0. Taking the
scalar product of this equality and U we get

(3.15) 9(VuU,X) =2X(8)/5,
and the scalar product with ¢ yields

(3.16) 9(VuU, X) = X(8)/B
From (3.15) and (3.16) we get

(3.17) X(8) =0

for any X € Dy. The scalar product of the above expression and X gives
(3.18) 9g(VxU,X)=0

for any X € Dy.

If we develop (Vx4uA)¢ — (VeA) (X +U) = —pX — ¢U and take its scalar
product with X € Dy we obtain 8g(VxU, X) + Bg(VyU, X) + 329(V:U, X) = 0.
From (3.17) and (3.18) this yields

(3.19) g(VeU, X) =0
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for any X € Dy.
Developing (Vx1evA)§ — (VeA)(X 4+ ¢U) = —¢X + U and taking its scalar
product with U, bearing in mind (3.17), (3.18) and (3.19) we have

(3.20) (6U)(B) + (1 - 282) — Fg(VedU, U) = 0.
and taking its scalar product with ¢ it follows

(3.21) 9(VepU,U) = —4.

From (3.20) and (3.21) we get

(3:22) (#U)(B) = —(26% +1).

If we develop (VyA) — (VeA)U = —¢U and take its scalar product with U we
obtain

(3.23) U(B) = —26¢(8)

and its scalar product with & gives

(3.24) &(8) = 0.
From (3.17), (3.22), (3.23) and (3.24) we get

(3.25) grad(B) = —(28% + 1)¢U.

Thus Vxgrad(3) = —48X (8)¢U —(23%+1)V x¢U for any X tangent to M. There-
fore, for any Y tangent to M we have g(Vxgrad(5),Y) = —48X(8)g(¢U,Y) —
(26 + 1)g(VxaU,Y). Thus g(Vxgrad(8),Y) — g(Vygrad(3), X) = 4B(Y(5)
96U, X) — X(B)g(6U, Y)) + (267 + 1)(g(Vy 60, X) — g(V x6U, Y).

As g(Vxgrad(B),Y) — g(Vygrad(B),X) = 0, it follows

(3.26) 4B(Y (B)g(oU, X) — X(B)g(oU,Y))
+(26° + 1)(g(VyoU, X) — g(VxoU,Y)) =0

for any X,Y tangent to M. Taking Y = £ in (3.26), for any X tangent to M we
get g(VeoU, X) = g(Vx U, &). Taking X = U we get
(3.27) 9(VesU,U) = B2 1.

From (3.21) and (3.27) we obtain 32 = —3, which is impossible, finishing the proof.
As a consequence we obtain

Corollary 3.1. There exist no real hypersurfaces in CP™, m > 3 satisfying R.R¢ =
0.

Proof. As this condition implies that M has cyclic-Ryan parallel structure Jacobi
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operator, it must be Hopf. So A¢ = a&. Then if we develop R¢(R(X, £)¢) = 0, with
X € D such that AX = AX, we get

(3.28) a?X? 4+ 2a\+1=0.

If « =0, (3.28) gives a contradiction. Thus M must be locally congruent to a
geodesic hypersphere. In this case, a = 2cot(2r), A = cot(r), r # /4,0 < r < w/2.
Thus (3.28) does not hold and we finish the proof. O
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