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INEQUALITIES OF OPERATOR VALUED QUANTUM SKEW

INFORMATION

Byoung Jin Choi and Mi Ra Lee

Abstract. In this paper, we study two operator-valued inequalities for

quantum Wigner-Yanase-Dyson skew information related to module op-
erators. These are extended results of the trace inequalities for Wigner-

Yanase-Dyson skew information. Moreover, we study a sufficient con-
dition to prove an uncertainty relation for operator-valued generalized

quantum Wigner-Yanase-Dyson skew information related to module op-

erators and a pair of functions (f, g). Also, we obtain several previous
results of scalar-valued cases as a consequence of our main result.

1. Introduction

In quantum information theory, quantum skew information plays an im-
portant role in matrix algebras. Quantum skew information is a significant
tool for understanding uncertainty relations. For example, in [9], Heisenberg
first proved the following uncertainty relation for a quantum state (or density
operator) ρ and a pair of self-adjoint matrices (or observables) A and B:

(1.1) Vρ(A)Vρ(B) ≥
∣∣∣∣12Tr (ρ[A,B])

∣∣∣∣2 ,
where Vρ(A) = Tr(ρA2)−Tr(ρA)

2
and [A,B] = AB −BA is the commutator.

Also Schrödinger in [14] proved that

(1.2) Vρ(A)Vρ(B)− |Re Covρ(A,B)|2 ≥
∣∣∣∣12Tr (ρ[A,B])

∣∣∣∣2 ,
where Covρ(A,B) := Tr(ρAB) − Tr(ρA)Tr(ρB) which is stronger result than
Heisenberg’s result (1.1). In [15], Yanagi et al. defined the new skew information
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(Wigner-Yanase-Dyson skew information) for an observable A, as the following:

Iαρ (A) :=
1

2
Tr
(
(i [ρα, A0])

(
i
[
ρ1−α, A0

]))
= Tr(ρA2)− Tr(ραAρ1−αA), α ∈ (0, 1),

where A0 = A − Tr(ρA)I. It can be considered as a kind of measurement for
non-commutativity between the density operator ρ and A. Note that if ρ is

a pure state, then I
1/2
ρ (A) = Vρ(A). But the Heisenberg type inequality for

I
1/2
ρ (A), i.e.,

I1/2ρ (A)I1/2ρ (B) ≥ 1

4
|Tr (ρ[A,B])|2 ,

fails in general (see e.g., [15]). On the other hand, for this information (indeed,
more general form), Furuichi proved that the following inequality [5]: for any
self-adjoint operators A and B,

(1.3)
∣∣∣Re Corr(f,g)ρ (A,B)

∣∣∣2 ≤ I(f,g)ρ (A)I(f,g)ρ (B),

where (f, g) is a monotone pair of functions,

Corr(f,g)ρ (A,B) = Tr(f(ρ)g(ρ)AB)− Tr(f(ρ)Ag(ρ)B)

and

I(f,g)ρ (A) := Corr(f,g)ρ (A,A).

Note that if we take f(x) = xα and g(x) = x1−α with α ∈ (0, 1), then one

reduces I
(f,g)
ρ to Iαρ . Indeed, in [15], Yanagi et al. proved that for any self-

adjoint elements A and B,∣∣Re Corrαρ (A,B)
∣∣2 ≤ Iαρ (A)Iαρ (B),

where

Corrαρ (A,B) = Tr(ρAB)− Tr(ραAρ1−αB).

Another generalization of Wigner-Yanase-Dyson skew information was stud-
ied by Furuichi et al. in [7]. More precisely, the authors defined the new skew
information as

Kα
ρ,Tr(A) :=

1

2
Tr

(i[ρα + ρ1−α

2
, A0

])2


and

Lαρ,Tr(A) :=
1

2
Tr

({
ρα + ρ1−α

2
, A0

}2
)
,
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where A0 = A−Tr(ρA)I and {A,B} = AB+BA is the anti-commutator, and
proved the uncertainty relation

(1.4) Wα
ρ,Tr(A)Wα

ρ,Tr(B) ≥ 1

4

∣∣∣∣∣∣Tr

(ρα + ρ1−α

2

)2

[A,B]

∣∣∣∣∣∣
2

for α ∈ (0, 1), a quantum state ρ, an observable A and

Wα
ρ,Tr(A) =

√
Kα
ρ,Tr(A)Lαρ,Tr(A).

For more results of uncertainty relations for quantum skew information, we
refer to [6, 8, 10–13], and references cited therein.

In [2], the authors introduced the new notion of Φ-density operators, where
Φ is a tracial positive linear operator on a C∗-algebraA, and the authors proved
the uncertainty relation for Wigner-Yanase-Dyson skew information valued in a
C∗-algebraA for any self-adjoint elements A and B inA and Φ-density operator
ρ ∈ A (see Corollary 2.6). Also, Heisenberg and Schrödinger’s uncertainty
relations for positive operators valued in C∗ or von Neumman algebras were
studied in [1–3].

The main purpose of this paper is to study the operator valued inequalities
concerning generalized quantum Wigner-Yanase-Dyson skew information of the
forms (1.3) and (1.4) (see Theorems 2.4 and 2.10). Also, we study a sufficient
condition to prove an uncertainty relation for operator valued generalized quan-
tum Wigner-Yanase-Dyson skew information of the form (1.3) (see Theorem
2.4). To do this, in Section 2, we define the generalized quantum (f, g)-skew in-
formation and the generalized quantum Wigner-Yanase skew information with
the certain condition of a pair of functions (f, g) (see the property (P) in Sec-
tion 2), and then we present main results in this paper. Also, we have several
corollaries as a consequence of main results, which include previous results. In
Section 3, we give the proofs of the inequalities with some lemmas.

2. Quantum skew information and main results

Let A and B be two unital C∗-algebras (or von Neumann algebras). A linear
operator T : A −→ B is called tracial if T (XY ) = T (Y X) for all X,Y ∈ A and
positive if T (X) ≥ 0 for all X ∈ A+, where A+ is a set of positive elements in
A.

Definition ([3]). Let (f, g) be a pair of continuous functions on a domain D
in R. Let T : A −→ B be a tracial positive operator and ρ be a T -density
operator, i.e., ρ is positive and T (ρ) = 1. Then

Corr
(f,g)
ρ,T (A,B) = T (f(ρ)g(ρ)A∗B)− T (f(ρ)A∗g(ρ)B), A,B ∈ A,

is called the generalized correlation and

I
(f,g)
ρ,T (A) := Corr

(f,g)
ρ,T (A,A), A ∈ A,
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is called the generalized quantum (f, g)-skew information.

Now, we say that a linear operator T : A −→ B and a pair function (f, g)
satisfy the property (P) if T and (f, g) satisfy the following property:

T (f(A)Bg(A)B) ≤ T (f(A)g(A)B2)

for any self-adjoint elements A and B in A. Note that in the above definition,
we always assume that (f, g) is defined on an interval containing the spectrums
of A and B, respectively.

Let A be a C∗-algebra and B be a C∗-subalgebra of A. A linear operator
T : A → B is called a module operator ([1]) if T satisfies the following property:

(2.1) T (AXB) = AT (X)B

for any X ∈ A and A,B ∈ B. Note that if a module operator T is tracial,
then by using module and tracial properties, we have T (A) ⊆ Z(B), where
Z(B) is the center of B. A pair (f, g) is said to be a monotone pair of operator
monotone functions on the domain D in R if

(f(a)− f(b)) (g(a)− g(b)) ≥ 0

for any a, b ∈ D. There are many examples of monotone pairs as following: for
more examples, see [10].

Example 2.1. (i) For any operator monotone function f , the pair (f, f)
is a monotone pair.

(ii)
(
xα, xβ

)
with α, β ∈ (0, 1) on [0, 1] is a monotone pair.

(iii)
(
xα+x1−α

2 , x
α+x1−α

2

)
with α ∈ (0, 1) on [0, 1] is a monotone pair.

Now, we give several examples of a pair of functions satisfying the property
(P) as followings:

Example 2.2. (i) Any trace Tr on an n × n-matrix algebra Mn×n and
any monotone pair (f, g) satisfy the property (P) for any self-adjoint
matrices A and B (see [4, Theorem 2]).

(ii) Any tracial positive linear operator T : A −→ B, where A and B are
von Neumann algebras, and a monotone pair (f, g) satisfy the property
(P) for any positive element A ∈ A and any self-adjoint element B ∈ A
(see [3, Theorem 4.1]).

(iii) Any tracial positive linear operator T : A −→ B, where A and B are
C∗-algebras, and the monotone pair (x1−α, xα) with α ∈ (0, 1) satisfy
the property (P) for any positive element A ∈ A and any self-adjoint
element B ∈ A (see [2, Lemma 3.1]).

Example 2.3. Any tracial positive module operator T : A −→ B ⊆ A, where
A and B are von Neumann algebras, and a pair (f, f) of positive preserving
function f (i.e., f(x) ≥ 0 for x ≥ 0) satisfy the property (P) for any positive
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elements A and B. Indeed, using the fact that T (A) ⊆ Z(B), and the inequality
(2.13) (Araki-Lieb-Thirring inequality) in [1, Theorem 2.8], we have

T (f(A)Bf(A)B) = T ((f(A)B)2) ≤ T (f(A)BBf(A)) = T (f(A)f(A)BB),

where A and B are positive elements in A.

The following theorem is one of the main results in this paper which is an
uncertainty relation for a generalized quantum (f, g)-skew information.

Theorem 2.4. Let A be a C∗-algebra and B be a C∗-subalgebra of A. Let
T : A −→ B be a tracial positive module operator. If T and (f, g) satisfy
property (P), then for all self-adjoint elements A,B ∈ A and T -density operator
ρ ∈ A, ∣∣∣Re Corr

(f,g)
ρ,T (A,B)

∣∣∣2 ≤ I(f,g)ρ,T (A)I
(f,g)
ρ,T (B),

where

Re Corr
(f,g)
ρ,T (A,B) :=

1

2

(
Corr

(f,g)
ρ,T (A,B) + Corr

(f,g)
ρ,T (A,B)∗

)
and (f, g) is a pair of functions which are defined on some interval containing
the spectrum of ρ.

By (ii), (iii) in Example 2.2 and Theorem 2.4, we have the following corol-
laries.

Corollary 2.5 ([3]). Let A be a von Neumann algebra and B be a von Neumann
subalgebra of A. Let T : A −→ B be a tracial positive module operator. Then
for all self-adjoint elements A,B ∈ A and T -density operator ρ ∈ A,∣∣∣Re Corr

(f,g)
ρ,T (A,B)

∣∣∣2 ≤ I(f,g)ρ,T (A)I
(f,g)
ρ,T (B),

where (f, g) is a monotone pair of functions.

If we take the monotone pair (f, g) = (x1−α, xα) with α ∈ (0, 1), we have
the following result.

Corollary 2.6 ([2]). Let A be a C∗-algebra and B be a C∗-subalgebra of A.
Let T : A −→ B be a tracial positive module operator. Then for all self-adjoint
elements A,B ∈ A and T -density operator ρ ∈ A,∣∣Re Corrαρ,T (A,B)

∣∣2 ≤ Iαρ,T (A)Iαρ,T (B), (α ∈ (0, 1)),

where Iαρ,T (A) := T (ρA2) − T (ραAρ1−αA) and Corrαρ,T (A,B) := T (ρA∗B) −
T (ραA∗ρ1−αB).

The following result is an infinite dimensional version of the Furuichi’s (f, g)-
skew information result in [5].
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Corollary 2.7 (c.f. [5]). Let B(H) be the Banach space of all bounded linear
operators on a Hilbert space H. Let Tr : B(H) → C be a usual trace and
(f, g) be a pair of functions. If Tr and (f, g) satisfy property (P), then for all
self-adjoint elements A,B ∈ B(H) and Tr-density operator ρ ∈ B(H),∣∣∣Re Corr

(f,g)
ρ,Tr (A,B)

∣∣∣2 ≤ I(f,g)ρ,Tr (A)I
(f,g)
ρ,Tr (B).

Remark 2.8. In Corollary 2.7, we take H = Cn with n ∈ N then by Example
2.2(i), Tr and any monotone pair (f, g) satisfy the property (P) for any self-
adjoint matrices A and B. Thus we have for any monotone pair (f, g),∣∣∣Re Corr

(f,g)
ρ,Tr (A,B)

∣∣∣2 ≤ I(f,g)ρ,Tr (A)I
(f,g)
ρ,Tr (B),

(see [5]).

Let T : A −→ B be a tracial positive module operator. For a T -density
operator ρ and a self-adjoint element A ∈ A, we define the generalized quantum
Wigner-Yanase skew information by

(2.2) Kf
ρ,T (A) := I

(f,f)
ρ,T (A) =

1

2
T

((
i
[
f(ρ), A0

])2)
,

where A0 = A−T (ρA). Indeed, for a tracial positive module operator T , since
f(ρ)g(ρ) = g(ρ)f(ρ), we have

I
(f,g)
ρ,T (A) =

1

2
T
((
i
[
f(ρ), A0

])(
i
[
g(ρ), A0

]))
.

It is a generalization of the quantum Wigner-Yanase skew information I
1/2
ρ,T (A).

We also define

(2.3) Lfρ,T (A) =
1

2
T
({
f(ρ), A0

}2)
.

Note that for any self-adjoint element A,(
i
[
f(ρ), A0

])∗
= i
[
f(ρ), A0

]
induces that Kf

ρ,T (A) is positive. Similarly, Lfρ,T (A) is positive with self-adjoint
element A ∈ A.

By Example 2.2 and Theorem 2.4, the following result holds.

Corollary 2.9. Let A be a von Neumann algebra and B be a von Neumann
subalgebra of A. Let T : A −→ B be a tracial positive module operator. Then
for any positive elements A,B ∈ A and T -density operator ρ ∈ A,∣∣∣Re Corr

(f,f)
ρ,T (A,B)

∣∣∣2 ≤ Kf
ρ,T (A)Kf

ρ,T (B),

where f is an operator monotone function or a positive preserving function.

Based on the above setting, we have the following inequality which is the
other main result in this paper.
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Theorem 2.10. Let A be a C∗-algebra and B be a C∗-subalgebra of A. If
T : A → B is a tracial positive module operator and ρ is a density operator
with respect to T , then it holds that

W f
ρ,T (A)W f

ρ,T (B) ≥ 1

4

∣∣T (f(ρ)2[A,B]
)∣∣2

with self-adjoint A,B ∈ A, where

W f
ρ,T (A) =

√
Kf
ρ,T (A)Lfρ,T (A),

and f is a function which is defined on an interval containing the spectrum of
T -density operator ρ.

Remark 2.11. (i) If we take f(x) = xα+x1−α

2 for α ∈ [0, 1] in (2.2) and (2.3)
respectively, then we obtain that for a self adjoint element A ∈ A

Kα
ρ,T (A) := Kf

ρ,T (A) =
1

2
T

(i[ρα + ρ1−α

2
, A0

])2


and

Lαρ,T (A) := Lfρ,T (A) =
1

2
T

({
ρα + ρ1−α

2
, A0

}2
)
,

where A0 = A− T (ρA). Then Theorem 2.10 induces the inequality

Wα
ρ,T (A)Wα

ρ,T (B) ≥ 1

4

∣∣∣∣∣∣T
(ρα + ρ1−α

2

)2

[A,B]

∣∣∣∣∣∣
2

,

where Wα
ρ,T (A) =

√
Kα
ρ,T (A)Lαρ,T (A).

(ii) If we take f(x) = x1/2 in (2.2) and (2.3) respectively, then we obtain
that for a self-adjoint element A ∈ A

I
1/2
ρ,T (A) = Kf

ρ,T (A) =
1

2
T

(i[ρ1/2, A0

])2


and

J
1/2
ρ,T (A) = Lfρ,T (A) =

1

2
T

({
ρ1/2, A0

}2
)
,

where A0 = A− T (ρA). Also, Theorem 2.10 induces the inequality

Uρ,T (A)Uρ,T (B) ≥ 1

4
|T (ρ[A,B])|2 ,

where Uρ,T (A) =
√
I
1/2
ρ,T (A)J

1/2
ρ,T (A) (see [2]).

Using Remark 2.11, we have the following corollaries which are related to
the Wigner-Yanase skew information and Lao’s information in [7, 12].
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Corollary 2.12 ([7]). Let B(H) be the Banach space of all bounded linear
operators on a Hilbert space H. Let Tr : B(H)→ C be a usual trace functional.
Then for any self-adjoint elements A,B ∈ B(H) and Tr-density operator ρ ∈
B(H),

Wα
ρ,Tr(A)Wα

ρ,Tr(B) ≥ 1

4

∣∣∣∣∣∣Tr

(ρα + ρ1−α

2

)2

[A,B]

∣∣∣∣∣∣
2

,

where Wα
ρ,Tr(A) =

√
Kα
ρ,Tr(A)Lαρ,Tr(A).

Corollary 2.13 ([12]). Let Tr : B(H) → C be a usual trace functional. Then
for any self-adjoint elements A,B ∈ B(H) and Tr-density operator ρ ∈ B(H),

Uρ,Tr(A)Uρ,Tr(B) ≥ 1

4
|Tr (ρ[A,B])|2 ,

where Uρ,Tr(A) =
√
I
1/2
ρ,Tr(A)J

1/2
ρ,Tr(A).

3. Proofs

3.1. Proof of Theorem 2.4

Let A be a C∗-algebra and B be a C∗-subalgebra of A. To prove Theorem
2.4, we need some lemmas.

Lemma 3.1. Let T : A −→ B be a tracial positive linear operator and (f, g)
be a pair of functions. If T and (f, g) satisfy the property (P), then for any
A ∈ A

I
(f,g)
ρ,T (A) ≥ 0.

Proof. The proof is clear owing to the property (P). �

Now, for any A,B ∈ A, we define

C̃orr
(f,g)

ρ,T (A,B) :=
1

2

(
Corr

(f,g)
ρ,T (A,B) + Corr

(f,g)
ρ,T (B∗, A∗)

)
and

Ĩ
(f,g)
ρ,T (A) := C̃orr

(f,g)

ρ,T (A,A).

Note that if A is a self-adjoint element, then Ĩ
(f,g)
ρ,T (A) = I

(f,g)
ρ,T (A). Also, it is

easy to show that the following properties hold:

(i) C̃orr
(f,g)

ρ,T (A,A) ≥ 0 for A ∈ A (using Lemma 3.1);

(ii) C̃orr
(f,g)

ρ,T (A,B+αC) = C̃orr
(f,g)

ρ,T (A,B)+αC̃orr
(f,g)

ρ,T (A,C) for A,B,C ∈
A and α ∈ C;

(iii) C̃orr
(f,g)

ρ,T (A,B)∗ = C̃orr
(f,g)

ρ,T (B,A) for A,B ∈ A (using the fact that
f(ρ)g(ρ) = g(ρ)f(ρ)).

Using the module property (2.1), we can prove the following lemma.
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Lemma 3.2. If T : A −→ B is a tracial positive module operator, then we
have

C̃orr
(f,g)

ρ,T (A,BC) = C̃orr
(f,g)

ρ,T (A,B)C

for all A,B ∈ A and C ∈ B and T -density operator ρ.

Proof. For any A,B ∈ A and any C ∈ B we obtain that

C̃orr
(f,g)

ρ,T (A,BC) =
1

2

(
Corr

(f,g)
ρ,T (A,BC) + Corr

(f,g)
ρ,T ((BC)∗, A∗)

)
=

1

2
(T (f(ρ)g(ρ)A∗BC)− T (f(ρ)A∗g(ρ)BC)

+T (f(ρ)g(ρ)BCA∗)− T (f(ρ)BCg(ρ)A∗)

=
1

2
(T (f(ρ)g(ρ)A∗B)C − T (f(ρ)A∗g(ρ)B)C

+T (f(ρ)g(ρ)BA∗)C − T (f(ρ)Bg(ρ)A∗)C)

=
1

2
(T (f(ρ)g(ρ)A∗B)− T (f(ρ)A∗g(ρ)B)

+T (f(ρ)g(ρ)BA∗)− T (f(ρ)Bg(ρ)A∗))C

= C̃orr
(f,g)

ρ,T (A,B)C,

by using module and tracial properties of T . �

Lemma 3.3 (Cauchy-Schwarz inequality, see [1,2]). Let T : A → B be a tracial
positive module operator. Then we have

|T (x∗y)|2 ≤ T (x∗x)T (y∗y), x, y ∈ A.

Now we prove the following theorem by applying the above lemmas.

Proof of Theorem 2.4. Define the map 〈·, ·〉 : A × A −→ B as 〈A, B〉 =

C̃orr
(f,g)

ρ,T (A,B). Then due to Lemma 3.2, it is clear that 〈·, ·〉 is a B-valued
semi-inner product and A is a B-module. Using Lemma 3.3, we obtain for all
self-adjoint elements A,B ∈ A that∣∣∣Re Corr

(f,g)
ρ,T (A,B)

∣∣∣2 =

∣∣∣∣12 (Corr
(f,g)
ρ,T (A,B) + Corr

(f,g)
ρ,T (B,A)

)∣∣∣∣2
=

∣∣∣∣C̃orr
(f,g)

ρ,T (A,B)

∣∣∣∣2
≤ 〈A, A〉 〈B, B〉

= I
(f,g)
ρ,T (A)I

(f,g)
ρ,T (B),

which gives the proof. �
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3.2. Proof of Theorem 2.10

Proof of Theorem 2.10. Let Z ∈ B be a self-adjoint element and put

(3.1) M = i
[
f(ρ), A0

]
Z +

{
f(ρ), B0

}
,

where A0 = A− T (ρA) and B0 = B − T (ρB). Then by the positivity of T we
obtain that

0 ≤ T (M∗M)

= T
((
iZ
[
f(ρ), A0

]
+
{
f(ρ), B0

})(
i
[
f(ρ), A0

]
Z +

{
f(ρ), B0

}))
= T

(
−Z[f(ρ), A0]2Z + iZ[f(ρ), A0]{f(ρ), B0}

+i{f(ρ), B0}[f(ρ), A0]Z + {f(ρ), B0}2
)

= ZT
(
(i[f(ρ), A0])2

)
Z+2iT ([f(ρ), A0]{f(ρ), B0})Z+T

(
{f(ρ), B0}2

)
= 2Kf

ρ,T (A)Z2 + 2iT ([f(ρ), A0]{f(ρ), B0})Z + 2Lfρ,T (B),(3.2)

where for the last equality, we use the fact that T (A) ⊆ Z(B). On the other
hand, since T is a tracial module operator, we obtain that

T ([f(ρ), A0]{f(ρ), B0})
= T

(
f(ρ)A0f(ρ)B0 + f(ρ)A0B0f(ρ)−A0f(ρ)2B0 − f(ρ)A0f(ρ)B0

)
= T

(
f(ρ)2(A0B0 −B0A0)

)
= T

(
f(ρ)2[A,B]

)
.(3.3)

Hence, combining (3.2) with (3.3), we have

(3.4) 0 ≤ 2Kf
ρ,T (A)Z2 + 2iT

(
f(ρ)2[A,B]

)
Z + 2Lfρ,T (B).

Now, without loss of the generality, we assume that Kf
ρ,T (A) > 0. Put

Z := − i
2
Kf
ρ,T (A)−1T

(
f(ρ)2[A,B]

)
.

Then we can see, using the fact that T (A) ⊆ Z(B),

−1

2
Kf
ρ,T (A)−1T

(
f(ρ)2[A,B]

)2
+Kf

ρ,T (A)−1T
(
f(ρ)2[A,B]

)2
+ 2Lfρ,T (B) ≥ 0,

equivalently,

Kf
ρ,T (A)Lfρ,T (B) ≥ −1

4
T
(
f(ρ)2[A,B]

)2
.

Since T (f(ρ)[A,B])
∗

= −T (f(ρ)[A,B]), we have

(3.5) Kf
ρ,T (A)Lfρ,T (B) ≥ 1

4

∣∣∣T (f(ρ)2[A,B]
) ∣∣∣2.

Finally, since T (A) ⊆ Z(B),

W f
ρ,T (A)W f

ρ,T (B) =
√
Kf
ρ,T (A)Lfρ,T (A)

√
Kf
ρ,T (B)Lfρ,T (B)

= (Kf
ρ,T (A)

1
2Lfρ,T (A)

1
2 )(Kf

ρ,T (B)
1
2Lfρ,T (B)

1
2 )
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=
(
Kf
ρ,T (A)Lfρ,T (B)

) 1
2
(
Kf
ρ,T (B)Lfρ,T (A)

) 1
2

≥ 1

4

∣∣∣T (f(ρ)2[A,B]
) ∣∣∣2

is obtained by (3.5). �

Remark 3.4. In the proof of Theorem 2.10, if we take M := i
(
ρ1/2A0

)
Z +

ρ1/2B0 in (3.1), then we have

(3.6) Vρ,T (A)Vρ,T (B) ≥
∣∣∣∣12T (ρ[A,B])

∣∣∣∣2 ,
where Vρ,T (A) = T(ρA2)−T(ρA)

2
which is the Heisenberg uncertainty relation

for T (see [2]). Indeed, if we take Z = − i
2T
(
ρA2

0

)−1
T (ρ[A0, B0]), where

A0 = A − T (ρA) and B0 = B − T (ρB), then we have (3.6) by using same
method in the proof.
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