• Title/Summary/Keyword: operator algebra

Search Result 139, Processing Time 0.028 seconds

HILBERT-SCHMIDT INTERPOLATION ON AX=Y IN A TRIDIAGONAL ALGEBRA ALG${\pounds}$

  • Kang, Joo-Ho
    • The Pure and Applied Mathematics
    • /
    • v.15 no.4
    • /
    • pp.401-406
    • /
    • 2008
  • Given operators X and Y acting on a separable complex Hilbert space H, an interpolating operator is a bounded operator A such that AX=Y. In this article, we investigate Hilbert-Schmidt interpolation problems for operators in a tridiagonal algebra and we get the following: Let ${\pounds}$ be a subspace lattice acting on a separable complex Hilbert space H and let X=$(x_{ij})$ and Y=$(y_{ij})$ be operators acting on H. Then the following are equivalent: (1) There exists a Hilbert-Schmidt operator $A=(a_{ij})$ in Alg${\pounds}$ such that AX=Y. (2) There is a bounded sequence $\{{\alpha}_n\}$ in $\mathbb{C}$ such that ${\sum}_{n=1}^{\infty}|{\alpha}_n|^2<{\infty}$ and $$y1_i={\alpha}_1x_{1i}+{\alpha}_2x_{2i}$$ $$y2k_i={\alpha}_{4k-1}x_2k_i$$ $$y{2k+1}_i={\alpha}_{4k}x_{2k}_i+{\alpha}_{4k+1}x_{2k+1}_i+{\alpha}_{4k+2}x_{2k+2}_i\;for\;all\;i,\;k\;\mathbb{N}$$.

  • PDF

MAXIMAL COLUMN RANKS AND THEIR PRESERVERS OF MATRICES OVER MAX ALGEBRA

  • Song, Seok-Zun;Kang, Kyung-Tae
    • Journal of the Korean Mathematical Society
    • /
    • v.40 no.6
    • /
    • pp.943-950
    • /
    • 2003
  • The maximal column rank of an m by n matrix A over max algebra is the maximal number of the columns of A which are linearly independent. We compare the maximal column rank with rank of matrices over max algebra. We also characterize the linear operators which preserve the maximal column rank of matrices over max algebra.

ON CLASS ALGEBRAS

  • Choi, Eun-Mi;Lee, Hei-Sook
    • Journal of the Korean Mathematical Society
    • /
    • v.40 no.2
    • /
    • pp.273-286
    • /
    • 2003
  • Let $F^{\alpha}$G be a twisted group algebra. A subalgebra of $F^{\alpha}$G generated by all class sums of partition P of G is called a projective class algebra in $F^{alpha}$G associated with partition P. In this paper we study various partitions of G determined by actions of certain operator groups on G and construct projective class algebras depending on the actions. With regard to projective class algebras, we investigate structures of associated skew group algebras and fixed group algebras.

COMMUTANTS OF TOEPLITZ OPERATORS WITH POLYNOMIAL SYMBOLS ON THE DIRICHLET SPACE

  • Chen, Yong;Lee, Young Joo
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.2
    • /
    • pp.533-542
    • /
    • 2019
  • We study commutants of Toeplitz operators acting on the Dirichlet space of the unit disk and prove that an operator in the Toeplitz algebra commuting with a Toeplitz operator with a nonconstant polynomial symbol must be a Toeplitz operator with an analytic symbol.

SELF-ADJOINT CYCLICALLY COMPACT OPERATORS AND ITS APPLICATION

  • Kudaybergenov, Karimbergen;Mukhamedov, Farrukh
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.2
    • /
    • pp.679-686
    • /
    • 2017
  • The present paper is devoted to self-adjoint cyclically compact operators on Hilbert-Kaplansky module over a ring of bounded measurable functions. The spectral theorem for such a class of operators is given. We use more simple and constructive method, which allowed to apply this result to compact operators relative to von Neumann algebras. Namely, a general form of compact operators relative to a type I von Neumann algebra is given.

EXTREME SETS OF RANK INEQUALITIES OVER BOOLEAN MATRICES AND THEIR PRESERVERS

  • Song, Seok Zun;Kang, Mun-Hwan;Jun, Young Bae
    • Communications of the Korean Mathematical Society
    • /
    • v.28 no.1
    • /
    • pp.1-9
    • /
    • 2013
  • We consider the sets of matrix ordered pairs which satisfy extremal properties with respect to Boolean rank inequalities of matrices over nonbinary Boolean algebra. We characterize linear operators that preserve these sets of matrix ordered pairs as the form of $T(X)=PXP^T$ with some permutation matrix P.

ISOMORPHISMS OF CERTAIN TRIDIAGONAL ALGEBRAS

  • Choi, Taeg-Young;Kim, Si-Ju
    • The Pure and Applied Mathematics
    • /
    • v.7 no.1
    • /
    • pp.49-60
    • /
    • 2000
  • We will characterize isomorphisms from the adjoint of a certain tridiag-onal algebra $AlgL_{2n}$ onto $AlgL_{2n}$. In this paper the following are proved: A map $\Phi{\;}:{\;}(AlgL_{2n})^{*}{\;}{\longrightarrow}{\;}AlgL_{2n}$ is an isomorphism if and only if there exists an operator S in $AlgL_{2n}$ with all diagonal entries are 1 and an invertible backward diagonal operator B such that ${\Phi}(A){\;}={\;}SBAB^{-1}S^{-1}$.

  • PDF

LINEAR MAPS THAT PRESERVE COMMUTING PAIRS OF MATRICES OVER GENERAL BOOLEAN ALGEBRA

  • SONG SEOK-ZUN;KANG KYUNG-TAE
    • Journal of the Korean Mathematical Society
    • /
    • v.43 no.1
    • /
    • pp.77-86
    • /
    • 2006
  • We consider the set of commuting pairs of matrices and their preservers over binary Boolean algebra, chain semiring and general Boolean algebra. We characterize those linear operators that preserve the set of commuting pairs of matrices over a general Boolean algebra and a chain semiring.