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MAXIMAL COLUMN RANKS AND THEIR
PRESERVERS OF MATRICES OVER MAX ALGEBRA

SEOK-ZUN SONG AND KYUNG-TAE KANG

ABSTRACT. The maximal column rank of an m by n matrix A over
max algebra is the maximal number of the columns of A which are
linearly independent. We compare the maximal column rank with
rank of matrices over max algebra. We also characterize the linear
operators which preserve the maximal column rank of matrices over
max algebra.

1. Introduction

There are many papers on the study of linear operators that pre-
serve rank and maximal column rank of matrices over several semirings
([2]-[6]). Bapat, Pati and Song [2] obtained characterizations of linear
operators that preserve the rank of matrices over max algebra.

Hwang, Kim and Song [5] defined a maximal column rank of a matrix
over a semiring and compared it with rank over various semirings. And
they obtained characterizations of the linear operators that preserve
maximal column ranks of matrices over Boolean algebra.

In this paper, we investigate the relationships between rank and maxi-
mal column rank of matrices over max algebra. We also extend the study
on known properties of linear operators preserving the rank of matrices
over max algebra carry over to linear operators preserving maximal col-
umn rank.

The maz algebra consists of the set Rypax, where Ryay is the set of
nonnegative real numbers, equipped with two binary operations, denoted
by @ and -(and to be referred to addition and multiplication over max
algebra), respectively. The operations are defined as a & b = max{a, b}
and a - b = ab. That is, their sum is the maximum of a and b and their
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product is the usual product in the reals. There has been a great deal
of interest in recent years in this max-algebra. This system allows us
to express some nonlinear phenomena in the conventional algebra in a
linear fashion. We refer to [1] for a description of such systems and their
applications.

Let My, xn(Rmax) denote the set of all m x n matrices with entries
in Ryax- The (4, j)th entry of a matrix A is denoted by a;;. If A = [a;;]
and B = [bij] are m X n matrices over Ry,ay, then the sum of A and B is
denoted by A@® B, which is the m x n matrix with a;; @ b;; as its (¢, j)th
entry. If ¢ € Ryax, then cA is the matrix [ca;;]. If A is an m X n matrix
and B is an n X p matrix, then their product is denoted by A® B, which
is the m x p matrix with max{a;-brj|r = 1,...,n} as its (i, j)th entry.
The zero matrix is denoted by O. The identity matrix of an appropriate
order is denoted by I. And the transpose of A = [a;;], denoted by A%, is
defined in the usual way. That is, the (7, j)th entry of A’ is aj; for all 4
and j.

Let S be a subset of (Rpnax)™, where n is a positive integer. Then S
is called linearly dependent if there exists & € S such that x is a linear
combination of elements in S — {&} with scalars in Rpyax. Otherwise S
is linearly independent. Thus an independent set cannot contain a zero
element.

2. Rank versus maximal column rank of matrices over max
algebra

The rank or factor rank, r(A), of a nonzero matrix A € My, xn(Rmax)
is defined as the least integer k for which there exist m x k and k x n
matrices B and C with A = B ® C. The rank of a zero matrix is zero.
Also we can easily obtain that 0 < r(4) < min{m,n}. The mazimal
column rank, mc(A), of A € My, xn(Rmax) is the maximal number of the
columns of which are linearly independent over Ry.x.

It follows that

(2.1) 0<r(A) <mec(A)<n
for all matrices over Ryax.

The maximal column rank of a matrix may actually exceed its rank
over Rpyax. For example, we consider a matrix

0011
(2.2) A= 1 0 01 € M3X4(Rmax)-
0110
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Then Example 2.5 (below) implies that r(A) = 3, but mc(A4) = 4.

LEMMA 2.1. For any m X n matrix A over Rpax, we have that
r(A) =1 if and only if mc(A) = 1.

Proof. If 7(A) = 1, then A can be factored as

23] a1b1 s albi s albn

a a2b RN azb. . a2b
A= :2 ®[b1 bz bn]: 1 ! n

am amb1 0 amb; - ambn

If there exist nonzero b; and b; for some % # j, then b; = %bi' Hence ith
and jth columns of A are linearly dependent. This implies that any two
columns of A are linearly dependent. Therefore mc(A) = 1.

The converse is obvious from (2.1). O

Let B(Rmax,m,n) be the largest integer k such that for all A €
My xn(Rimax), 7(A) = me(A) if »(A) < k. The matrix A in (2.2) shows
that B(Rpax, 3,4) < 3. In general 0 < B(Ryax, m,n) < n. We also obtain
that

(2.3) rq‘g 8]):7-(,4) and mc<[‘§ 8]>:mc(A)

for all m x n matrices A over Ryax.

LEMMA 2.2. If mc(A) > r(A) for some p x q matrix A over Rpax,
then for all m > p and n > q, H(Rmax, m,n) < r(A).

Proof. Since mc(A) > r(A) for some p X ¢ matrix A, we have

B(Ruax, p,q) < r(A) from the definition of 3. Let B = [ 61 8 ] be

an m X n matrix containing A as a submatrix. Then by (2.3),

r(B) = r(A) < me(A) = me(B).

So, B(Rmax, m,n) < r(A) for all m > p and n > q. a

LEMMA 2.3. For any A € Maxn(Rmax) with n > 2, we have that
r(A) = 2 if and only if mc(A) = 2.

Proof. Let 7(A) = 2. If n = 2, then (2.1) implies that mc(A) = 2. So
we may assume that n > 3. Let

(5) (&)= (5)
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be any three columns of A. Then we claim that the three columns are
linearly dependent. To show this, we consider three cases.

Case 1) There are at least two zero elements in {a, b, ¢, d, e, f}. Then
it is obvious that the three columns are linearly dependent.

Case 2) There is only one zero element in {a, b, ¢, d, e, f}. Then,
without loss of generality, we may take b = 0 and max{$, ?} = %. Thus

we have
ga@f_c:e@gc:e'
a\ 0 d\d f f

So the given three columns are linearly dependent.

Case 3) There is no zero element in {a, b, ¢, d, e, f}. Then, without
loss of generality, we may assume that § < 3 < % Thus we obtain

p(5)es(5)=(3227)=(2):

Hence the given three columns are linearly dependent.
This shows that mc(A) < 3. Therefore me(A4) = 2 by (2.1).
The converse follows from (2.1) and Lemma 2.1. O

THEOREM 2.4. For any A € My xn(Rpmax) with m > 2 and n > 2,
we have that r(A) = 2 implies mc(A) = 2 and conversely.

Proof. Let r(A) = 2. Then A can be factored as A = B® C for some
m x 2 matrix B =[x y| and 2 X n matrix C with (B) =r(C) = 2. If
n = 2, then (2.1) implies that mc(A) = 2. So we can assume that n > 3.

Then any column of A has the form ax @ by with a column ( z > of

C. Let ax @ by, cx & dy and ex @ fy be any three columns of A. Then

(3) (&) = (7)
are columns of C' and hence they are linearly dependent by Lemma 2.3.
Now we consider all three cases in the proof of Lemma 2.3. But it is

sufficient to consider the case 3), that is, {a, b, ¢, d, e, f} has no zero
element with 7 < 3 < % Then the proof of Lemma 2.3 implies that

d

d c c
c-zaEBze and d—ngB—éf.
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Thus we have

d d
cx ®dy = Slaé}afe Td —beaff yz—(am@by)@f(emeafy).
b e b e b e

Therefore we have mc(A4) < 2, which implies that mec(A) = 2 by (2.1).
The converse is obvious from (2.1) and Lemma 2.1. O

EXAMPLE 2.5. Consider the matrix in (2.2);

0 011
A = 1 0 01 € M3><4(Rmax)-
0110

Since all columns of A are linearly independent over Rpax, we have
mc(A) = 4. And r(A) > 3 by Lemma 2.1 and Theorem 2.4. Hence
r(A) = 3 from (2.1). O

THEOREM 2.6. For m x n matrices over max algebra, we have the
values of 3 as follows;

1 if min{m,n} =1,
B(Rmax,m,n) =< 3 if m>3, and n=3,
2 otherwise.

Proof. If min{m,n} = 1, then we have B(Ryax,m,n) = 1 from
Lemma 2.1. Consider the matrix A € M3y 4(Rpax) in (2.2). Thenr(A) =
3 and mc(A) = 4. Thus we have S(Rmax, m,n) < 2 for all m > 3 and
n > 4 by Lemma 2.2.

Suppose m > 2 and n > 2. Then we have B(Rmax,m,n) > 2 for
all m > 2 and n > 2 by Lemma 2.1 and Theorem 2.4. Moreover, for
A € M x3(Rmax) with m > 3, r(A) = 3 implies mc(A) = 3 from (2.1)
and mc(A) = 3 implies r(A) = 3 from Lemma 2.1 and Theorem 2.4.
Thus we have S(Rmax, m,3) = 3 for m > 3.

Therefore we have determined the values of (3, as required. O

3. Linear operators that preserve maximal column rank of
matrices over max algebra

In this section we obtain characterizations of the linear operators that
preserve maximal column rank of matrices over max algebra.

A linear operator 7' on M,,xn(Rmax) is said to preserve maximal
column rank if me(T'(A)) = mc(A) for all A € My, xn(Rpyax). It preserves
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mazimal column rank r if mc(T(A)) = r whenever mc(A) = r. For the
rank preserver and rank r preserver, they are defined similarly.

A square matrix A over Rpax is called monomial if it has exactly
one nonzero element in each row and column. Since My xpn(Rpmax) is a
semiring, we can consider the invertible members of its multiplicative
monoid. The monomial matrices are precisely invertible matrices over

Rmax [2]-

LEMMA 3.1. The maximal column rank of a matrix over Ry ., is
preserved under pre or post-multiplication by an invertible matrix.

Proof. For the case of pre-multiplication, let A be any matrix in
Mpmxn(Rmax), and U be an invertible matrix in My, xm(Rmax). Then
U is monomial. If mc(A) = r, then there exists 7 linearly independent
columns a;(1), - .. , @) in A which are maximal. Then U®ay(y),...,U®
a;(r) are linearly independent columns of U ® A. Thus mc(U ® A) > 7.

Conversely, if mc(U ® A) = r, then there exists r linearly inde-
pendent columns b;), ... ,by,) in U ® A which are maximal. Then
Ul® bi1y, -+ » U l® by(r) are linearly independent columns of U~! ®
U® A= A. Hence mc(A) > r. Therefore we have mc(A) = me(U ® A).

For the case of post-multiplication, let V' be an invertible matrix in
My xn(Rmax). Then V' is monomial. Let v; be the nonzero entry of the
i-th column of V. Then we have

AQV =la1a -~ an|®V = [via;g) v2a;(2) " VnGi(n) ]

where, a1, ..., ay are the columns of A and {i(1),...,i(n)} is a permu-
tation of {1,...,n}. If ag,ay,...,a, are linearly independent columns
of A, then vza;(4), Uy@y(y), - - -, V2a4(;) are linearly independent columns
of A® V, and conversely. Hence mc(A) = me(A® V). O

We say that a linear operator T' is a (U, V)-operator if there exist
monomial matrices U € My, xm(Rmax) and V € My xpn(Rmax) such that
either T(A) = UQAQV orm = n, T(A) = U ® A* ® V for all
A E men(Rmax)-

ExXAMPLE 3.2. Let

-0 0
—_—0 O =

0
0
0
0

OO

be a matrix in Mygx4(Rmax). Then me(B) = 3 since the first three
columns of B are linearly independent over Ry,.x. But the maximal
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column rank of

B! =

O = O
= o O
=]
am B N

O

000

is 4 by (2.3) and Example 2.5. Thus the transposition operator does not
preserve maximal column rank 3 on My, xn(Rpax) for m =n > 4.

THEOREM 3.3. ([2]) If T is a linear operator on Mp,xn(Rmax) With
m > 1 and n > 1, then the following statements are equivalent:

(1) T is a rank preserver;
(2) T preserves the ranks of all rank one and rank two matrices;
(3) T is a (U, V)-operator.

THEOREM 3.4. Suppose T is a linear operator on My, xn(Rmax) with
m > 4 and n > 3. Then the following statements are equivalent:

(1) T preserves maximal column rank;

(2) T preserves maximal column ranks 1, 2 and 3,

(3) There exist monomial matrices U € My, xm(Rmax) and V € Myuxn,
(Ruax) such that T(4) = U @ A®V for all A € M xn(Rmax)-

Proof. Obviously (1) implies (2). Assume that T preserves maximal
column ranks 1, 2 and 3. Then T preserves ranks 1 and 2 by Lemma
2.1 and Theorem 2.4. Theorem 3.3 implies that T is a (U, V')-operator.
But the transposition operator does not preserve maximal column rank
3 by Example 3.2. Hence T has the form T(A) = U ® A® V for some
monomial matrices U € My, xm(Rmax) and V € My xn(Rmax). That is,
(2) implies (3). Finally, if we assume (3), then T preserves maximal
column rank by Lemma 3.1. Hence (3) implies (1). O

We have assumed that m > 4 and n > 3 in the Theorem 3.4. For the
other cases, the linear operators which preserve maximal column rank
are the same as rank preservers in the Theorem 3.3. We show it in the
following remark.

REMARK 3.5. Suppose T is a linear operator on M, xn(Rmax) with
m < 3 or n < 2. Then the following statements are equivalent:

(1) T preserves maximal column rank;

(2) T preserves maximal column ranks 1 and 2;
(3) T is a (U, V)-operator.
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Proof. 1t is obvious that (1) implies (2). Assume that T preserves
maximal column ranks 1 and 2. Then T preserves ranks 1 and 2 by
Theorem 2.6. Thus T is a (U, V)-operator by Theorem 3.3. That is,
(2) implies (3). Assume that T is a (U,V)-operator. Then for any
A € Mpxn(Rmax), there exist monomial matrices U € My, xm (Rumax)
and V' € Myxn(Rmax) such that either T(A) = U AQ®V or m = n,
T(A) = U® A* ® V. For the case T(A) = U ® A® V, T preserves
all maximal column ranks by Lemma 3.1. For the case m = n and
T(A)=U ® A*® V, we have m = n < 3 from the conditions on m and
n. But Theorem 2.6 implies that r(A4) = mc(A) < 3 for m = n < 3.
Then T'(A) = U ® A*® V preserves all ranks by Theorem 3.3 and hence
it preserves all maximal column ranks for m = n < 3. Therefore (3)
implies (1). O

Thus we have characterized the linear operators that preserve the
maximal column rank of matrices over max algebra.
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