J. Korean Math. Soc. 43 (2006), No. 1, pp. 77-86

LINEAR MAPS THAT PRESERVE COMMUTING PAIRS
OF MATRICES OVER GENERAL BOOLEAN ALGEBRA

SEOK-ZUN SoNG AND KYUNG-TAE KANG

ABSTRACT. We consider the set of commuting pairs of matrices and
their preservers over binary Boolean algebra, chain semiring and
general Boolean algebra. We characterize those linear operators
that preserve the set of commuting pairs of matrices over a general
Boolean algebra and a chain semiring.

1. Introduction

One of the most active and fertile subjects in matrix theory during
the past one hundred years is the linear preserver problem, which con-
cerns the characterization of linear operators on matrix spaces that leave
certain functions, subsets, relations, etc., invariant. Although the linear
operators concerned are mostly linear operators on matrix spaces over
some fields or rings, the same problem has been extended to matrices
over various semirings ([1]-[8]).

Let M,,(S) denote the set of n x n matrices over a nonempty set S.
A set of commuting pairs of matrices, C, is the set of (unordered) pairs
of matrices (A, B) such that AB = BA. A linear operator T' on M, (S)
is said to preserve C (or T preserves commuting pairs of matrices) if
(T(A), T(B)) € Cforall (A,B) € C.

Commutativity of matrices play a central role in the theory of matri-
ces. There are many papers on the linear transformations that preserve
the set of commuting pairs of matrices over various algebraic structure
(see [1]-[3], [5]-[6], [8])- Song and Beasley [6] obtained characterizations
of linear operators that preserve commuting pairs of matrices over the
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nonnegative reals, R;. Watkins [8] showed that if n > 4 and S is an
algebraically closed field of characteristic 0, and T is a nonsingular lin-
ear operator on M, (S) which preserves commuting pairs of matrices,
then there exist an invertible matrix U, a nonzero scalar « and a linear
functional f : M, (S) — S such that either

(1) T(X) = aUXU™! + f(X)I,, for all X € M,(S), or

(2) T(X) = aUXU ™t + f(X)I,, for all X € M, (S).

Beasley [1] extended this to the case n = 3. The real symmetric
and complex Hermitian cases were investigated by Chan and Lim [2].
Further extensions to more general fields were obtained by Radjavi [5]
and Choi, Jafarian and Radjavi [3].

In this paper, we study the semigroup of linear operators that pre-
serve commuting pairs of matrices over a Boolean algebra and a chain
semiring. In Theorem 3.3 we show that it is generated by transpositions
and similarity operators over the binary Boolean algebra and a chain
semiring. Also in Theorem 4.3 we extend these results to the general
Boolean case and obtain an linear operator which is not generated by
transpositions and similarity operators.

2. Preliminaries

A semiring is a nonempty set S on which operations of addition(+)
and multiplication(-) have been defined such that the following condi-
tions are satisfied :

(a) (S,+) is a commutative monoid with identity element 0;
(b) (S,-) is a monoid with identity element 1;

(c) multiplication distributes over addition from either side;
(d) s0 =0 =0s for all s €8S.

For a fixed positive integer &, let By, be the Boolean algebra of subsets
of a k-element set S and 01,09, ..., 0, denote the singleton subsets of
Si. Union is denoted by + and intersection by juxtaposition; 0 denotes
the null set and 1 the set Si. Under these two operations, B is a com-
mutative antinegative semiring(that is, only 0 has an additive inverse);
all of its elements, except 0 and 1, are zero-divisors. In particular, if
k=1, By is called the binary Boolean algebra.

Let K be any set of two or more elements. If K is totally ordered by <
(i.e., x < y or y < z for all distinct elements z,y in K), then define z +y
as max(z,y) and zy as min(z,y) for all z,y € K. If K has a universal
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lower bound and a universal upper bound, then K becomes a semiring,
and called a chain semiring. The following are interesting examples of
a chain semiring.

Let H be any nonempty family of sets nested by inclusion, 0 = Nz =,
and 1 = Ugegz. Then S =HU {0, 1} is a chain semiring.

Let o, w be real numbers with o < w. Define S={8 R : a <<
w}. Then S is a chain semiring with & = 0 and w = 1. It is isomorphic
to the chain semiring in the previous example with H = {[a, 5] : o <
B < w}. Furthermore, if we choose the real numbers 0 and 1 as o and w
in the previous example, then m x n matrices over F= {# : 0 < 5 <1}
is called fuzzy matrices.

In particular, if we take H to be a singleton set, say {a}, and denote
0 by 0 and {a} by 1, the resulting chain semiring becomes the binary
Boolean algebra B = {0,1}, and it is a subsemiring of every chain semir-
ing. Since any general Boolean algebra By (k > 2) is not totally ordered
under inclusion, it is not a chain semiring.

Hereafter, unless otherwise specified, S denote an arbitrary semiring,
and By a general Boolean algebra, and K a chain semiring.

Let M, (S) denote the set of all n x n matrices with entries in S.
Then algebraic operations on M, (S) are defined as if S were a field.
The identity matrix and the zero matrix are denoted by I, and 0,.
Since M, (S) is a semiring, we can consider the invertible members of its
multiplicative monoid. A matrix A € M,(S) is said to be invertible if
there exists a matrix B € M,,(S) such that AB = BA = I,,. It is well
known [4] that the permutation matrices are the only invertible matrices
on M, (By).

For any matrix A = [a;;] € M,(By), the I'" constituent, A, of A is
the n x n binary Boolean matrix whose (%, j)-th entry is 1 if and only if
a;; 2 0. Via the constituents, A can be written uniquely as

k
A= Z O'ZAl,
=1

which is called the canonical form of A (see [4]).

It follows from the uniqueness of the decomposition and the fact that
the singletons are mutually orthogonal idempotents that for all matrices
A, B € M,,(Bg) and all o € By,

(2.1) (AB): = AiBy;
(2.2) (A + B)l = A, + By;
(2.3) (CvA)l == alAl.
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for all 1 <[ < k. Thus each [*® constituent operator, T}, is a homomor-
phism of M, (By) onto M, (B;), and preserves the products of matrices
in My (By).

LEMMA 2.1. For any matrix A € M,(By) with k > 1, A is invertible
if and only if all its constituents are permutation matrices. In particular,
if A is invertible, then A~' = A%, where At denote the transpose of A.

Proof. If A is an invertible matrix in M, (Bg), then there exists a
matrix B € M,,(By) such that AB = I,,. The equality (2.1) implies that
(AB), = AB; =1, for alll = 1,...,k. It follows that all constituents
of A are permutation matrices. Conversely, assume that each I*h con-
stituent, A;, of A is a permutation matrix. Then we have A;A} = I,, for
alll=1,...,k, and hence

k k bk k
AAt = (Z O’IA1> (Z (T[Al> = ZO’[A[A? = E: O'lIn = In.
=1 =1 =1

I=1
Therefore A is invertible. O
Lemma 2.1 shows that all permutation matrices are only invert-

ible matrices on M, (B1), while there exists an invertible matrix on
M, (Bg)(k > 2) which is not a permutation. For example, consider

o1 02 03
A= o9 03 01 EMg(Bg).
o3 01 02

Then AA! = I3, but A is not a permutation matrix in M3(B3).
For each z € K, define

« ] 0 if =0,
711 ifz#o0.

Then the mapping z — z* is a homomorphism of K onto B; = {0,1}.
Its entrywise extension to a mapping A — A* of M,,(K) onto My, (B1)
preserves matrix sums and products and multiplication by scalars.

LEMMA 2.2. The permutation matrices are the only invertible mem-
bers of My (K).

Proof. Let A be an invertible matrix in M, (K). Then there exists a
matrix B € M, (K) such that AB = I,,. This implies A*B* = I,, and
thus A* and B* are permutation matrices with B* = A*‘. Since any
product of two element in K is their minimum, the nonzero entries in A
are 1’s. Therefore A is a permutation matrix. O
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3. The binary Boolean case

In this section we obtain characterizations of the linear operators that
preserve the set of commuting pairs of matrices over the binary Boolean
algebra B; = {0,1} and a chain semiring K.

The nxn matrix all of whose entries are zero except its (i, j)-th, which
is 1, is denoted E;;. We call Ej; a cell. Let E, = {E;;|i,j =1,...,n}
denote the set of all cells. If A = [a;;] and B = [b;;] are matrices in
M, (S), we shall use the notation A < B(or B > A) if b;; = 0 implies
a;; = 0 for all 7,7. This provides a reflexive and transitive relation on
M, (S). If A and B are matrices in M,,(S) with A > B, it follows from
the linearity of T' that T(A) > T'(B) for any linear operator T on M,,(S).

LEMMA 3.1. Let S =By or S = K. Then for a linear operator T on
M,,(S), T is invertible if and only if T permutes E,,.

Proof. Suppose that T is invertible on M, (S). Let E;; be any element
in E,,. By invertibility of T', there exists at least one cell E,4 in E,, such
that T(E;;) > E,;. Thus we have E;; > T Y(E,) because T is
also linear. This implies that T~!(E,s) = aE;; for some nonzero scalar
a €S, equivalently B, = oT'(E;;).

If S = By, we have o = 1 so that T(E;;) = E,s. If S = K, the
(r,s)-th entry of E,s is 1, while that of oT(E;;) is a. Thus we have
a =1, and hence T'(E;;) = Ey,.

Since E;; is an arbitrary cell, T' permutes E,,. The converse is imme-
diate. O

For S = By or S = K, let T be a linear operator on M, (S) that
preserves commuting pairs of matrices. Then the following example
shows that T" may be not invertible. :

EXAMPLE 3.2. For S = By, let T be an operator on M, (S) defined
by
for all X € M,(S). Then we can easily show that T is linear and
preserves commuting pairs of matrices. But Lemma 3.1 implies that T
is not invertible.

THEOREM 3.3. For S =By or S = K, let T be a linear operator on
M,,(S). Then T is an invertible linear operator that preserves commuting
pairs of matrices if and only if there exists a permutation matrix P such
that either

(a) T(X)=PXP? for all X € M,(S), or
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(b) T(X) = PX'P! for all X € M,(S).

Proof. Let T be an invertible linear operator on M, (S) which pre-
serves commuting pairs of matrices. Note that if AX = XA for all
X € M,(S), then we have A = 0, or I,. Thus we have T'(I,) = I,
because T is invertible.

By Lemma 3.1, T permutes E,,. It follows from T'(1,,) = I, that there
is a permutation o of {1,...,n} such that T(E;;) = E, ;) for each
i =1,...,n. Define an operator L on M,(S) by

L(X) = P'T(X)P

for all X € M, (S), where P is the permutation matrix corresponding
to o so that L(Ey;) = E;; for each ¢ = 1,...,n. Then we can easily
show that L is an invertible linear operator on M, (S) which preserves
commuting pairs of matrices. By Lemma, 3.1, L permutes [E,,. Therefore
for any cell E,s in E,,, there exists exactly one cell E,, in E, such that
L(Eys) = Epq.

Suppose that r # s. Since L is injective, we have p # g because
L(E;) = E; for each it = 1,...,n. Assume that p # r and p # s. Then
Ers (Err + Ess + Epp) = (E'rr + Ess + Epp)E’r‘87

so that
L(E’I‘S)L(ETT + Ess + Epp) = L(Err + Ess + Epp)L(ET'S)a
equivalently
Epg(Err + Ess + Epp) = (Epr + Egs + Epp) Epg.

It follows that ¢ = r or ¢ = s. Since

ETS(ET?" + Ess) = (Err + Ess)E'rsa
we have

L(E""S)L(ET"‘ + ESS) = L(Er'r + Ess)L(E‘rs)a

or equivalently

qu(Err + Ess) - (E'rr + Ess)qu-
Since g = r or q = s, we have

EPQ(ETT + Ess) = Epr or Eps;
but (E,, + Ess)Epq = 0, a contradiction. Hence we have p =17 or p = s.

Similarly we obtain ¢ = r or ¢ = s. Therefore, for each E,; € E,,, we
have

(3.1) L(E;s) = E,s or L(E;s) = Eg.
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Suppose that L(E,s) = Eps with r # s and L(E) = Ey, for some
t #r,s. It follows from (3.1) and invertibility of L that L(Es + Eys) =
Est + Ets~ Let A = E’r’r + Est + Ets so that L(A) = Err + Est + Ets.
Then

(Ers + Ert)A - A(Ers =+ E?"t)a
and hence
L(Ers + Ert)L(A) = L(A)L(ETS + Ert)-

But L(Eys+ Ent)L(A) = Ey4+ Eyy, while L(A)L(Eys + Ert) = Ers+ Eqr.
Thus we have ¢t = s, a contradiction. It follows that if L(E;;) = E;; for
some E;; € E, with ¢ # j, then we have L(Es) = E,; for all E.; € Ey,.
Similarly, if L(E;;) = Ej; for some E;; € E, with i # j, then we have
L(E,s) = Es, for all E,.; € E,. Consequently, we have established that
L(X)= X or L(X) = Xt for all X € M,(S).

Let L(X) = X for all X € M,,(S). By the definition of L, we have

P'T(X)P = X,
or equivalently
T(X)=PXP!

for all X € M,(S). Similarly, if L(X) = X*, we obtain that T(X) =
P XtP! for all X € M, (S).

The converse is immediate. O

4. The general Boolean case

In this section, we extend the results of the binary Boolean case to
those of general Boolean case. Also we obtain another linear operator
that preserves commuting pairs of matrices over a general Boolean alge-
bra, which is neither a transposition operator nor a similarity operator.

If T is a linear operator on M, (Bg) with £ > 1, foreach 1 <[ < k
define its I'" constituent operator, Tj, by

Ty(B) = (T(B))
for all B € M,(B;). By the linearity of T', we have

k
T(A) =) o/Ti(A)
=1

for any matrix A € M, (By).

LEMMA 4.1. If T is an invertible linear operator on M, (By) with
k > 1, then each I*" constituent operator, T;, commutes E,.
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Proof. 1t follows from Lemma 3.1 and the definition of a constituent
operator. O

For any fixed invertible matrix U in M, (S), the operator A — U AU
is called a similarity operator. We can easily show that any similarity
operator on M,(S) is an invertible linear operator and preserves com-
muting pairs of matrices. Also, we can restate Theorem 3.3 as follows:
the semigroup of linear operators that preserve commuting pairs of ma-
trices over B, is generated by transpositions and similarity operators.
But for general Boolean algebra By with k£ > 2, the following exam-
ple shows that there exists another invertible linear operator preserving
commuting pairs of matrices which is neither a transposition operator
nor a similarity operator.

EXAMPLE 4.2. Let

_ g1 02
U= [ P :l GMQ(IBQ).
By Lemma 2.1, U is an invertible matrix in My(Bs) with U™t = Ut
Define an operator T on Ma(B3) by

T(X) =U(o1 X1 + 02 X3)U?

2
forall X = > 0yX; € My(B2). Then we can easily show that T'is a linear
=1

operator on M (B2) which is neither a transposition nor a similarity.
Let T(X) =T(Y). Since U is invertible, we have

o1 X1+ UgXé =o01Y1 + 0'23/;,

and hence X; = Y] for each | = 1,2. By the uniqueness of canonical
form of a matrix, X =Y and thus T is injective.

2
Let Y = 3 01Y] be any matrix in My(B3). Then we can take the
=1
matrix X = 01Y1 + 02Y] € My(B2), so that T(X) = Y. This implies
that T is surjective. Therefore T is invertible. It follows from the canon-
ical form of a matrix in M, (B) that T preserves commuting pairs of
matrices.

THEOREM 4.3. Let T be a linear operator on M,,(Bg) with k > 1.
Then T is an invertible linear operator preserving commuting pairs of
matrices if and only if there exists an invertible matrix U in My (By)
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such that
k
T(X) = U(Zam) Ut
=1
for all X € M,,(By), where Y; = X, or Y, = X} foreachl =1,... k.

Proof. Assume that T is an invertible linear operator on M, (By) pre-
serving commuting pairs of matrices. Then we can easily show that all
its constituent operators, 7}, are invertible linear operators on M, (B;)

and preserve commuting pairs of matrices for each [ =1,... k.
k
Let X = Y ¢;X; be any matrix in M, (Bs). Then we have T(X) =
=1

k
3" 0yTy(X;). By Theorem 3.3, each ' constituent operator, 7}, has the
=1

form
T(X;) = PX,P} or Ti(X;)=PRX[F,
where each P, is a permutation matrix for all { = 1,..., k. Thus we have
k
T(X) =Y oPY/F,
=1

where Y, = X or Y, = X} for each [ = 1,..., k, equivalently

)= (L) (o) (35 ur)

k
If we let U = ( > UlPl), then U is invertible in M,,(Bg) by Lemma 2.1,
=1

and hence the re—sult is satisfied.
The converse is immediate. O

Thus we obtain characterizations of invertible linear operators which
preserve commuting pairs of matrices over general Boolean algebra or
chain semiring.
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