COMMUTANTS OF TOEPLITZ OPERATORS WITH POLYNOMIAL SYMBOLS ON THE DIRICHLET SPACE

Yong Chen and Young Joo Lee

Abstract

We study commutants of Toeplitz operators acting on the Dirichlet space of the unit disk and prove that an operator in the Toeplitz algebra commuting with a Toeplitz operator with a nonconstant polynomial symbol must be a Toeplitz operator with an analytic symbol.

1. Introduction

Let \mathbb{D} be the unit disk in the complex plane \mathbb{C}. The Sobolev space $\mathscr{L}^{2,1}$ is the completion of the space of all smooth functions f on \mathbb{D} for which

$$
\|f\|=\left\{\left|\int_{\mathbb{D}} f d A\right|^{2}+\int_{\mathbb{D}}\left(\left|\frac{\partial f}{\partial z}\right|^{2}+\left|\frac{\partial f}{\partial \bar{z}}\right|^{2}\right) d A\right\}^{1 / 2}<\infty
$$

where $d A$ denotes the normalized Lebesgue measure on \mathbb{D}. The space $\mathscr{L}^{2,1}$ is a Hilbert space with the inner product

$$
\langle f, g\rangle=\int_{\mathbb{D}} f d A \int_{\mathbb{D}} \bar{g} d A+\int_{\mathbb{D}}\left(\frac{\partial f}{\partial z} \frac{\overline{\partial g}}{\partial z}+\frac{\partial f}{\partial \bar{z}} \frac{\overline{\partial g}}{\partial \bar{z}}\right) d A .
$$

The Dirichlet space \mathscr{D} is then a closed subspace consisting of all analytic functions in $\mathscr{L}^{2,1}$. Let P denote the orthogonal projection from $\mathscr{L}^{2,1}$ onto \mathscr{D}. Given a function $\varphi \in \mathscr{L}^{2,1}$, the Toeplitz operator T_{φ} with symbol φ is densely defined on \mathscr{D} by

$$
T_{\varphi} f=P(\varphi f)
$$

whenever $f \varphi \in \mathscr{L}^{2,1}$.
In this paper, we are concerned with the commutants of Toeplitz operators on the Dirichlet space \mathscr{D}. For a bounded operator L on a Hilbert space H, we

[^0]recall that the commutant of L is the set of all bounded operator S on H such that $S L=L S$ on H.

On the Hardy space of the unit disk, Brown and Halmos [2] first obtained a complete description of commuting Toeplitz operators asserting that two Toeplitz operators with general bounded symbols commute if and only if either both symbols are analytic, or both symbols are co-analytic, or a nontrivial linear combination of the symbols is constant. Also, the commutants of several kinds of Toeplitz operators have been described as in [5], [7] and [12].

Later, the corresponding problem for Toeplitz operators acting on the Bergman space of the unit disk has been also studied. Axler and Cucučković [1] proved that the result of Brown and Halmos still holds for harmonic symbols. Also, Cučković [6] showed that operators belong to the intersection of the Toeplitz algebra and commutant of a Toeplitz operator with monomial symbol must be Toeplitz operators with analytic symbols. Later Tikaradze [11] extended the result of C̆učković [6] to Toeplitz operators with polynomial symbols.

On the Dirichlet space \mathscr{D} under consideration, Duistermaat and the second author [8] characterized harmonic symbols of Toeplitz operators belong to the commutant of a Toeplitz operator with harmonic symbol. More explicitly, for bounded harmonic symbols u, v whose their derivatives with respect to z and \bar{z} are all bounded, it is shown that $T_{u} T_{v}=T_{v} T_{u}$ on \mathscr{D} if and only if either u, v are holomorphic or u, v and 1 are linearly dependent. This result shows that the commuting property on the Dirichlet space \mathscr{D} has a different phenomenon from that on the Hardy space or Bergman space.

Motivated by the results mentioned above, in this paper we continue to study the describing problem of commutants of Toeplitz operators on the Dirichlet space. We consider nonconstant polynomial symbols of Toeplitz operators and find their commutants in the norm closed subalgebra generated by Toeplitz operators on \mathscr{D}. More explicitly, we prove that an operator in such a subalgebra commuting with a Toeplitz operator with a nonconstant polynomial symbol must be a Toeplitz operator with an analytic symbol; see Theorem 9. In the course of the proof, we study the characterization problem of the multiplication operators with analytic symbols, which might be of independent interest; see Propositions 2.

In Section 2, we characterize boundedness and compactness of multiplication operators with analytic symbols. Such characterizations will be very useful in our proofs. In Section 3, we prove our main theorem.

2. Multiplication operators

In this section, we characterize the boundedness and compactness of the multiplication operator with analytic symbol in terms of certain Carleson measures. This will be useful in our characterizations.

A positive Borel measure μ on \mathbb{D} is called an \mathscr{D}-Carleson measure if there exists a constant $C>0$ for which

$$
\left(\int_{\mathbb{D}}|f|^{2} d \mu\right)^{\frac{1}{2}} \leq C\|f\|
$$

for every $f \in \mathscr{D}$. See [10] or [13] for several characterizations for \mathscr{D}-Carleson measures. We let \mathscr{M} be the space of all $u \in \mathscr{L}^{2,1}$ for which $u \in L^{\infty}(\mathbb{D})$ and the measures $\left|\frac{\partial u}{\partial z}\right|^{2} d A,\left|\frac{\partial u}{\partial \bar{z}}\right|^{2} d A$ are \mathscr{D}-Carleson measures. Here $L^{p}(\mathbb{D})=L^{p}(\mathbb{D}, d A)$ denotes the usual Lebesgue space on \mathbb{D}.

In our characterization of multiplication operators, certain kernel functions will play an important role. We introduce two kernel functions. For $a \in \mathbb{D}$, we let

$$
E_{a}(z)=\frac{z}{1-\bar{a} z}, \quad S_{a}(z)=\frac{1}{(1-\bar{a} z)^{2}}, \quad z \in \mathbb{D} .
$$

Put $e_{a}=\left(1-|a|^{2}\right) E_{a}$ and $s_{a}=\left(1-|a|^{2}\right) S_{a}$. Then we check $e_{a}^{\prime}=s_{a}$ and $\left\|e_{a}\right\|=1$. Also, it is well known that

$$
\begin{equation*}
f(a)=\left\langle f, S_{a}\right\rangle_{L^{2}} \tag{1}
\end{equation*}
$$

for analytic $f \in L^{1}(\mathbb{D})$; see Section 4 of [15] for details. Here and in what follows, we use the notations

$$
\langle\varphi, \psi\rangle_{L^{2}}=\int_{\mathbb{D}} \varphi \bar{\psi} d A, \quad\|\psi\|_{L^{2}}=\langle\psi, \psi\rangle_{2}
$$

for functions $\varphi, \psi \in L^{2}(\mathbb{D})$. For any analytic function $f \in L^{2}(\mathbb{D})$, it is also well known that $\left(1-|a|^{2}\right)|f(a)| \rightarrow 0$ as $|a| \rightarrow 1$; see Theorem 2.1 of [14] and its remark. In particular, we have

$$
\begin{equation*}
\lim _{|a| \rightarrow 1}\left(1-|a|^{2}\right)\left|f^{\prime}(a)\right|=0 \tag{2}
\end{equation*}
$$

for every $f \in \mathscr{D}$.
Proposition 1. e_{a} converges weakly to 0 in \mathscr{D} as $|a| \rightarrow 1$.
Proof. Note $e_{a}(0)=0$ for all $a \in \mathbb{D}$. It follows from (1) and (2) that

$$
\lim _{|a| \rightarrow 1}\left\langle f, e_{a}\right\rangle=\lim _{|a| \rightarrow 1}\left(1-|a|^{2}\right)\left\langle f^{\prime}, S_{a}\right\rangle_{L^{2}}=\lim _{|a| \rightarrow 1}\left(1-|a|^{2}\right) f^{\prime}(a)=0
$$

for every $f \in \mathscr{D}$, which shows that e_{a} converges weakly to 0 as $|a| \rightarrow 1$, as desired. The proof is complete.

Given $u \in \mathscr{L}^{2,1}$, we let M_{u} denote the multiplication operator with symbol u defined by $M_{u} f=u f$.

We now characterize the boundedness and compactness of multiplication operators with analytic symbol. Proposition 2(b) below is known; for example see Theorem 5.1.7 of [9] where a different argument was used.
Proposition 2. Let $u: \mathbb{D} \rightarrow \mathbb{C}$ be a function. Then the following statements hold.
(a) If $u \in \mathscr{M}$, then $M_{u}: \mathscr{D} \rightarrow \mathscr{L}^{2,1}$ is bounded.
(b) If u is analytic on \mathbb{D}, then $M_{u}: \mathscr{D} \rightarrow \mathscr{D}$ is bounded if and only if $u \in \mathscr{M}$.
(c) $M_{u}: \mathscr{D} \rightarrow \mathscr{D}$ is compact if and only if $u=0$ on \mathbb{D}.

Proof. First we prove (a). Note that $\|\varphi\|_{L^{2}} \leq\|\varphi\|$ for every $\varphi \in \mathscr{D}$. Since $u \in \mathscr{M}$, it follows that there exist constants C_{1}, C_{2} for which

$$
\begin{aligned}
\left\|M_{u} h\right\|^{2} & =\|u h\|^{2} \\
& =\left|\int_{\mathbb{D}} u h d A\right|^{2}+\int_{\mathbb{D}}\left(\left|\frac{\partial u}{\partial z} h+u h^{\prime}\right|^{2}+\left|\frac{\partial u}{\partial \bar{z}} h\right|^{2}\right) d A \\
& \leq\|u\|_{\infty}^{2} \int_{\mathbb{D}}|h|^{2} d A+C_{1}\|h\|^{2}+\|u\|_{\infty}^{2} \int_{\mathbb{D}}\left|h^{\prime}\right|^{2} d A+C_{2}\|h\|^{2} \\
& \leq\left(\|u\|_{\infty}^{2}+C_{1}+\|u\|_{\infty}^{2}+C_{2}\right)\|h\|^{2}
\end{aligned}
$$

for every $h \in \mathscr{D}$, which implies the boundedness of $M_{u}: \mathscr{D} \rightarrow \mathscr{L}^{2,1}$.
Now, assume u is analytic and prove (b). First suppose $M_{u}: \mathscr{D} \rightarrow \mathscr{D}$ is bounded. Since $u=M_{u} 1$, we note $u \in \mathscr{D}$. Fix $a \in \mathbb{D}$. Since $u^{\prime} e_{a}$ is analytic in $L^{2}(\mathbb{D})$, we have $\left\langle u^{\prime} e_{a}, S_{a}\right\rangle_{L^{2}}=a u^{\prime}(a)$ by (1). It follows from (1) again that

$$
\begin{align*}
\left\langle M_{u} e_{a}, e_{a}\right\rangle & =\left\langle u e_{a}, e_{a}\right\rangle \\
& =\left\langle u^{\prime} e_{a}, s_{a}\right\rangle_{L^{2}}+\left\langle u s_{a}, s_{a}\right\rangle_{L^{2}} \\
& =\left(1-|a|^{2}\right)\left[\left\langle u^{\prime} e_{a}, S_{a}\right\rangle_{L^{2}}+\left\langle u s_{a}, S_{a}\right\rangle_{L^{2}}\right] \tag{3}\\
& =\left(1-|a|^{2}\right)\left[u^{\prime}(a) a+u(a) s_{a}(a)\right] \\
& =\left(1-|a|^{2}\right) u^{\prime}(a) a+u(a) .
\end{align*}
$$

Since $\left\|e_{a}\right\|=1$, it follows that

$$
|u(a)| \leq\left|\left\langle M_{u} e_{a}, e_{a}\right\rangle\right|+\left|a\left(1-|a|^{2}\right) u^{\prime}(a)\right| \leq\left|\left|M_{u}\right|\right|+\left(1-|a|^{2}\right)\left|u^{\prime}(a)\right|
$$

for each $a \in \mathbb{D}$. On the other hand, (2) implies that $\left(1-|a|^{2}\right)\left|u^{\prime}(a)\right|$ is bounded in \mathbb{D}. Thus, the above observation shows $u \in L^{\infty}(\mathbb{D})$. Now, it remains to show that $\left|u^{\prime}\right|^{2} d A$ is an \mathscr{D}-Carleson measure on \mathbb{D}. Given $k \in \mathscr{D}$, we put

$$
\psi(z)=\int_{0}^{z} u^{\prime}(\zeta) k(\zeta) d \zeta, \quad z \in \mathbb{D}
$$

Then, since $\psi(0)=0$, we have

$$
\left\langle M_{u} k, \psi\right\rangle=\langle u k, \psi\rangle=\left\langle u k^{\prime}, u^{\prime} k\right\rangle_{L^{2}}+\left\langle u^{\prime} k, u^{\prime} k\right\rangle_{L^{2}}
$$

and hence

$$
\begin{aligned}
\left\|u^{\prime} k\right\|_{L^{2}}^{2} & =\left|\left\langle u^{\prime} k, u^{\prime} k\right\rangle_{L^{2}}\right| \\
& \leq\left|\left\langle M_{u} k, \psi\right\rangle\right|+\left|\left\langle u k^{\prime}, u^{\prime} k\right\rangle_{L^{2}}\right| \\
& \leq\left\|M_{u}\right\|\|k \mid\| \psi\| \|+\left\|u k^{\prime}\right\|_{L^{2}}\left\|u^{\prime} k\right\|_{L^{2}} \\
& \leq\left\|M_{u}\right\|\|k \mid\| u^{\prime} k\left\|_{L^{2}}+\right\| u\left\|_{\infty}\right\| k\| \| u^{\prime} k \|_{L^{2}}
\end{aligned}
$$

for all $k \in \mathscr{D}$. It follows that

$$
\left\|u^{\prime} k\right\|_{L^{2}} \leq\left(\left\|M_{u}\right\|+\|u\|_{\infty}\right)\|k\|
$$

for all $k \in \mathscr{D}$, which implies that $\left|u^{\prime}\right|^{2} d A$ is an \mathscr{D}-Carleson measure. The converse implication follows from (a).

Finally, to prove (c), suppose $M_{u}: \mathscr{D} \rightarrow \mathscr{D}$ is compact. Recall $u \in \mathscr{D}$ because $u=M_{u} 1$ as before. Note that the normalized kernel e_{a} converges weakly to 0 in \mathscr{D} as $|a| \rightarrow 1$ by Proposition 1. Thus, (3) together with (2) shows that $u(a) \rightarrow 0$ as $|a| \rightarrow 1$, which implies $u=0$ as desired. Since the converse is clear, we complete the proof.

3. Commutants of Toeplitz operators

Each point evaluation is easily verified to be a bounded linear functional on \mathscr{D}. Hence, for each $z \in \mathbb{D}$, there exists a unique kernel $K_{z} \in \mathscr{D}$ which has the following reproducing property

$$
\begin{equation*}
f(z)=\left\langle f, K_{z}\right\rangle \tag{4}
\end{equation*}
$$

for every $f \in \mathscr{D}$. Then, it is easy to see that the kernel function K_{z} is given by

$$
K_{z}(w)=1+\log \left(\frac{1}{1-\bar{z} w}\right), \quad w \in \mathbb{D}
$$

By the explicit formula for K_{z}, one can see that the projection P can be represented by the integral formula as follows:

$$
\begin{align*}
P \psi(z) & =\left\langle P \psi, K_{z}\right\rangle \\
& =\left\langle\psi, K_{z}\right\rangle \tag{5}\\
& =\int_{D} \psi d A+\int_{D} \frac{z}{1-z \bar{w}} \frac{\partial \psi}{\partial w}(w) d A(w), \quad z \in \mathbb{D}
\end{align*}
$$

for every function $\psi \in \mathscr{L}^{2,1}$. See [8] for details and related facts. Put

$$
P_{0} \psi(z)=\int_{D} \frac{z}{1-z \bar{w}} \frac{\partial \psi}{\partial w}(w) d A(w)
$$

for notational simplicity. Then, by a simple calculation using the above formula for P_{0}, we can easily see that for integers $m, n \geq 1$

$$
P_{0}\left[\bar{z}^{m} z^{n}\right](z)= \begin{cases}z^{n-m} & \text { if } n>m \tag{6}\\ 0 & \text { if } n \leq m\end{cases}
$$

For the proof of the main theorem, we need the compactness of semicommutators of certain Toeplitz operators. To do this, we use a decomposition of the Sobolev space $\mathscr{L}^{2,1}$.

For $\psi \in \mathscr{L}^{2,1}$, it turns out that $\psi\left(r e^{i \theta}\right)$ is absolutely continuous on $r \in[0,1)$ for almost every $\theta \in[0,2 \pi]$ and absolutely continuous on $\theta \in[0,2 \pi]$ for almost every $r \in[0,1)$. In particular, the radial limit $\left.\psi\right|_{\partial \mathbb{D}}$ defined by

$$
\left.\psi\right|_{\partial \mathbb{D}}\left(e^{i \theta}\right)=\lim _{r \rightarrow 1} \psi\left(r e^{i \theta}\right)
$$

exists for almost every $\theta \in[0,2 \pi]$. See [3] or [4] for details and related facts. We let

$$
\Delta_{0}=\left\{\psi \in \mathscr{L}^{2,1}:\left.\psi\right|_{\partial \mathbb{D}}=0\right\}
$$

and \mathscr{D}_{0} be the space of all functions $f \in \mathscr{D}$ for which $f(0)=0$. Also, put $\Delta=\Delta_{0}+\mathbb{C}$. Then it turns out that the spaces Δ, \mathscr{D}_{0} and $\overline{\mathscr{D}}_{0}$ are mutually orthogonal. It is also known that the Sobolev space $\mathscr{L}^{2,1}$ admits the following useful decomposition:

$$
\begin{equation*}
\mathscr{L}^{2,1}=\Delta \oplus \mathscr{D}_{0} \oplus \overline{\mathscr{D}_{0}} \tag{7}
\end{equation*}
$$

see [4] for details and related facts.
Given a function $u \in \mathscr{L}^{2,1}$, we let $S_{u}: \mathscr{D}^{\perp} \rightarrow \mathscr{D}$ be the dual Hankel operator with symbol u defined by

$$
S_{u} \varphi=P(u \varphi)
$$

whenever $u \varphi \in \mathscr{L}^{2,1}$.
The following lemma shows that the dual Hankel operators with monomial symbol are finite rank operators.
Lemma 3. For an integer $k \geq 0$, the rank of $S_{z^{k}}$ is at most k.
Proof. Let $\varphi \in \mathscr{D}^{\perp}$ be any function. By (7), we can write $\varphi=f+c+g+h$ where $f \in \Delta_{0}, c \in \mathbb{C}, g \in \mathscr{D}_{0}$ and $h \in \overline{\mathscr{D}_{0}}$. Recall that Δ, \mathscr{D}_{0} and $\overline{\mathscr{D}_{0}}$ are mutually orthogonal. Since $\varphi \in \mathscr{D}^{\perp}$, we have $g=0$ and hence $\varphi=f+c+h$. Note $P_{0}\left(\mathscr{L}^{2,1}\right) \subset \mathscr{D}_{0}$. Since $z^{k} f \in \Delta_{0}$ and Δ_{0} is orthogonal to \mathscr{D}_{0}, we see $P_{0}\left(z^{k} f\right)=0$ and then

$$
P\left(w^{k} f\right)=\int_{\mathbb{D}} w^{k} f(w) d A(w)
$$

Also, if we write $h(z)=\sum_{j=1}^{\infty} a_{n} \overline{z^{j}}$ for the Taylor series expansion of h, we see from (6)

$$
\begin{aligned}
P\left(w^{k} h\right)(z) & =\sum_{j=1}^{\infty} a_{j} P\left(w^{k} \overline{w^{j}}\right) \\
& =\sum_{j=1}^{\infty} a_{j}\left[\int_{\mathbb{D}} w^{k} \overline{w^{j}} d A(w)+P_{0}\left(w^{k} \overline{w^{j}}\right)\right] \\
& =a_{k} \int_{\mathbb{D}}\left|w^{k}\right|^{2} d A(w)+\sum_{j=1}^{k-1} a_{j} z^{k-j} \\
& =\frac{a_{k}}{k+1}+\sum_{j=1}^{k-1} a_{k-j} z^{j}
\end{aligned}
$$

for all $z \in \mathbb{D}$. It follows that

$$
S_{z^{k}} \varphi(z)=P\left(w^{k} f+w^{k} c+w^{k} h\right)(z)
$$

$$
=\int_{\mathbb{D}} w^{k} f(w) d A(w)+c z^{k}+\frac{a_{k}}{k+1}+\sum_{j=1}^{k-1} a_{k-j} z^{j}
$$

which implies that $S_{z^{k}}$ has at most rank k. The proof is complete.
We let the notation \mathcal{B} denote the algebra consisting of all bounded operators on \mathscr{D} and \mathcal{K} be the algebra of all compact operators on \mathscr{D}.

For $u \in \mathscr{M}$, the multiplication operator $M_{u}: \mathscr{D} \rightarrow \mathscr{L}^{2,1}$ is bounded by Proposition 2(b). So the Toeplitz operator T_{u} is also bounded because $T_{u}=$ $P M_{u}$. The following will be very useful in our proof.

Proposition 4. For an integer $k \geq 0$ and $u \in \mathscr{M}$, we have $T_{z^{k} u}-T_{z^{k}} T_{u} \in \mathcal{K}$.
Proof. Note that

$$
\begin{aligned}
{\left[T_{z^{k} u}-T_{z^{k}} T_{u}\right] f } & =P\left(w^{k} u f\right)-z^{k} P(u f) \\
& =P\left[w^{k}(u f-P(u f))\right] \\
& =S_{z^{k}}(I-P) M_{u} f
\end{aligned}
$$

for all $f \in \mathscr{D}$, which shows that $T_{z^{k} u}-T_{z^{k}} T_{u}=S_{z^{k}}(I-P) M_{u}$ on \mathscr{D}. Note M_{u} is bounded by Proposition 2(a) and $S_{z^{k}}$ is compact because it is a finite rank operator by Lemma 3. Thus $T_{z^{k} u}-T_{z^{k}} T_{u}$ is compact on \mathscr{D}. The proof is complete.

The following simple lemma shows that a bounded operator commuting with T_{z} is a Toeplitz operator with an analytic symbol.

Lemma 5. Let $S \in \mathcal{B}$. If $S T_{z}=T_{z} S$ on \mathscr{D}, then $S=T_{\varphi}$ for some analytic $\varphi \in \mathscr{M}$.

Proof. Put $g=S 1$. Since $S T_{z}=T_{z} S$ by the assumption, we have $S z^{k}=z^{k} g$ for every $k=0,1, \ldots$. Then, by the similar argument as in the proof of Theorem 1.4 of [6], we see $S f=g f=M_{g} f$ for every $f \in \mathscr{D}$. Note $g \in \mathscr{M}$ by Proposition 2(b) because S is bounded. Thus $S=T_{g}$ on \mathscr{D}. The proof is complete.

Before we prove the main result, we first consider special cases of polynomial symbols as preliminary steps.

Proposition 6. Let p be a nonconstant polynomial which is not of the form $q\left(z^{\ell}\right)$ where q is a polynomial and $\ell>1$ is an integer. If $S \in \mathscr{B}$ commutes with T_{p} on \mathscr{D}, then $S=T_{\varphi}$ for some analytic $\varphi \in \mathscr{M}$.

Proof. By Proposition 0.1 of [11], there exists an open set $U \subset \mathbb{D}$ such that

$$
\frac{p(z)-p(w)}{z-w} \neq 0
$$

for all $z \in \overline{\mathbb{D}}$ and $w \in U$, which implies that

$$
\begin{equation*}
[p-p(w)] \mathscr{D}=(z-w) \mathscr{D}, \quad w \in U \tag{8}
\end{equation*}
$$

On the other hand, by (4), we can see

$$
\begin{equation*}
T_{u}^{*} K_{w}(z)=\left\langle T_{u}^{*} K_{w}, K_{z}\right\rangle=\left\langle K_{w}, u K_{z}\right\rangle=\overline{u(w) K_{z}(w)}=\overline{u(w)} K_{w}(z) \tag{9}
\end{equation*}
$$

for all $u \in \mathscr{D}$ and $z, w \in \mathbb{D}$. Since $T_{p} S=S T_{p}$, we have $T_{p-p(w)} S=S T_{p-p(w)}$ and hence $S^{*} T_{p-p(w)}^{*}=T_{p-p(w)}^{*} S^{*}$ for all $w \in U$. It follows from (9) that $T_{p-p(w)}^{*} S^{*} K_{w}=0$ and then $S^{*} K_{w}$ is orthogonal to the range of $T_{p-p(w)}$ for all $w \in U$. Note that for $w \in U$, the range of $T_{p-p(w)}$ is $(z-w) \mathscr{D}$ by (8) and K_{w} is orthogonal to $(z-w) \mathscr{D}$. Thus, we can find a function χ on U such that $S^{*} K_{w}(z)=\chi(w) K_{w}(z)$ for all $z \in \mathbb{D}$ and $w \in U$. It follows from (4) that

$$
S f(w)=\left\langle S f, K_{w}\right\rangle=\left\langle f, S^{*} K_{w}\right\rangle=\left\langle f, \chi(w) K_{w}\right\rangle=\overline{\chi(w)} f(w)
$$

and then $\left[S T_{z} f-T_{z} S f\right](w)=0$ for all $w \in U$ and $f \in \mathscr{D}$. Thus S commutes with T_{z} and the result follows from Lemma 5 . The proof is complete.

Moreover, if S is compact, we have some more as in the following proposition.
Proposition 7. Let $S \in \mathcal{K}$ and $m \geq 1$ be an integer. Let p be a nonconstant polynomial which is not of the form $q\left(z^{\ell}\right)$ where q is a polynomial and $\ell>1$ is an integer. If S commutes with $T_{p\left(z^{m}\right)}$ on \mathscr{D}, then $S=0$.
Proof. For each $j=0,1, \ldots, m-1$, we put

$$
E_{j}:=\overline{\operatorname{span}}\left\{z^{n m+j}: n=0,1,2, \ldots\right\} .
$$

Then we can check that $z^{m} E_{j} \subset E_{j}$ and $\mathscr{D}=\sum_{j=0}^{m-1} E_{j}$. Let $P_{j}: \mathscr{D} \rightarrow E_{j}$ be the orthogonal projection and define $e_{j}: \mathscr{D} \rightarrow E_{j}$ by $e_{j}\left(z^{n}\right)=z^{n m+j}$ for $n=0,1, \ldots$. It's clear that e_{j} is invertible. Set $f_{j}=e_{j}^{-1} P_{j}$. Then we see $e_{j} T_{p}=T_{p\left(z^{m}\right)} e_{j}$ and $f_{j} T_{p\left(z^{m}\right)}=T_{p} f_{j}$ for each $j=0,1, \ldots, m-1$. For $0 \leq i, j<m$, we put $S_{i, j}:=f_{j} S e_{i}$. Then, since $S T_{p\left(z^{m}\right)}=T_{p\left(z^{m}\right)} S$, we have

$$
S_{i, j} T_{p}=f_{j} S e_{i} T_{p}=f_{j} S T_{p\left(z^{m}\right)} e_{i}=f_{j} T_{p\left(z^{m}\right)} S e_{i}=T_{p} f_{j} S e_{i}=T_{p} S_{i, j}
$$

and hence $S_{i, j}$ commutes with T_{p} for each i, j. By Proposition $6, S_{i, j}=T_{\varphi_{i, j}}$ for some analytic $\varphi_{i, j} \in \mathscr{M}$. But, since S is compact, so is each $S_{i, j}$. By Proposition 2(c), we have $\varphi_{i, j}=0$ and then $S_{i, j}=0$ for all i, j. Note that

$$
S e_{j}\left(z^{n}\right)=\sum_{k=0}^{m-1} P_{k} S e_{j}\left(z^{n}\right)=\sum_{k=0}^{m-1} e_{k} f_{k} S e_{j}\left(z^{n}\right)=\sum_{k=0}^{m-1} e_{k} S_{j, k}\left(z^{n}\right)=0
$$

for all $n=0,1, \ldots$ and $j=0,1, \ldots, m-1$. Hence $S e_{j}=0$ for all j and then $S=0$ as desired. The proof is complete.

Recall that the Toeplitz algebra \mathscr{T} is the norm closed subalgebra of \mathscr{B} generated by all Toeplitz operators with symbol in \mathscr{M}. The following will be useful in the proof of the main theorem.

Lemma 8. Let $S \in \mathscr{T}$. Then $S T_{z}-T_{z} S \in \mathcal{K}$.

Proof. If we first assume $S=T_{u}$ for some $u \in \mathscr{M}$, then $S T_{z}-T_{z} S=T_{u z}-T_{z} T_{u}$ is compact by Proposition 4 (with $k=1$). Then, by using the cannonical homomorphism $\Psi: \mathscr{B} \rightarrow \mathscr{B} / \mathscr{K}$ given by $\Psi(T)=T+\mathscr{K}$, we have

$$
\Psi\left(T_{u}\right) \Psi\left(T_{z}\right)=\Psi\left(T_{z}\right) \Psi\left(T_{u}\right)
$$

for every $u \in \mathscr{M}$. If we assume $S=T_{u_{1}} \cdots T_{u_{n}}$ where $u_{j} \in \mathscr{M}$, the above implies that $\Psi\left[S T_{z}-T_{z} S\right]=0$ and hence $S T_{z}-T_{z} S \in \mathscr{K}$. Now, for an arbitrary operator S in \mathscr{T}, we have $S=\lim S_{k}$ where each S_{k} is a finite sum of the form $T_{u_{1}} \cdots T_{u_{n}}$. It follows that $S T_{z}-T_{z} S$ is the limit of the compact operators $S_{k} T_{z}-T_{z} S_{k}$ and hence compact as desired. The proof is complete.

Now, we are ready to prove our main theorem.
Theorem 9. Let $S \in \mathscr{T}$ and p be a nonconstant polynomial. Then $S T_{p}=T_{p} S$ on \mathscr{D} if and only if $S=T_{\varphi}$ for some analytic $\varphi \in \mathscr{M}$.

Proof. First suppose $S T_{p}=T_{p} S$. Put $\mathbb{S}=S T_{z}-T_{z} S$ for simplicity. Note $\mathbb{S} \in \mathcal{K}$ by Lemma 8 . Since $S T_{p}=T_{p} S$ by the assumption, we can easily see

$$
\mathbb{S} T_{p}=S T_{p} T_{z}-T_{z} T_{p} S=T_{p} S T_{z}-T_{p} T_{z} S=T_{p} \mathbb{S}
$$

and hence \mathbb{S} commutes with T_{p}. Now, by an application of Proposition 7, we see $\mathbb{S}=0$. Then, Lemma 5 gives the desired result. The converse implication is clear. The proof is complete.

References

[1] S. Axler and \breve{Z}. C̆uc̆ković, Commuting Toeplitz operators with harmonic symbols, Integral Equations Operator Theory 14 (1991), no. 1, 1-12.
2] A. Brown and P. R. Halmos, Algebraic properties of Toeplitz operators, J. Reine Angew. Math. 213 (1963/1964), 89-102.
[3] Y. Chen, Commuting Toeplitz operators on the Dirichlet space, J. Math. Anal. Appl. 357 (2009), no. 1, 214-224.
4] Y. Chen and N. Q. Dieu, Toeplitz and Hankel operators with $L^{\infty, 1}$ symbols on Dirichlet space, J. Math. Anal. Appl. 369 (2010), no. 1, 368-376.
5] C. C. Cowen, The commutant of an analytic Toeplitz operator, Trans. Amer. Math. Soc. 239 (1978), 1-31.
6] Z. Cučković, Commutants of Toeplitz operators on the Bergman space, Pacific J. Math. 162 (1994), no. 2, 277-285.
[7] J. A. Deddens and T. K. Wong, The commutant of analytic Toeplitz operators, Trans. Amer. Math. Soc. 184 (1973), 261-273.
[8] J. J. Duistermaat and Y. J. Lee, Toeplitz operators on the Dirichlet space, J. Math. Anal. Appl. 300 (2004), no. 1, 54-67.
9] O. El-Fallah, K. Kellay, J. Mashreghi, and T. Ransford, A primer on the Dirichlet space, Cambridge Tracts in Mathematics, 203, Cambridge University Press, Cambridge, 2014.
10] D. A. Stegenga, Multipliers of the Dirichlet space, Illinois J. Math. 24 (1980), no. 1, 113-139.
[11] A. Tikaradze, Centralizers of Toeplitz operators with polynomial symbols, Complex Anal. Oper. Theory 6 (2012), no. 6, 1275-1279.
[12] J. E. Thomson, The commutants of certain analytic Toeplitz operators, Proc. Amer. Math. Soc. 54 (1976), 165-169.
[13] Z. Wu, Carleson measures and multipliers for Dirichlet spaces, J. Funct. Anal. 169 (1999), no. 1, 148-163.
[14] K. Zhu, Spaces of Holomorphic Functions in the Unit Ball, Graduate Texts in Mathematics, 226, Springer-Verlag, New York, 2005
[15] , Operator Theory in Function Spaces, second edition, Mathematical Surveys and Monographs, 138, American Mathematical Society, Providence, RI, 2007.

Yong Chen
Department of Mathematics
Hangzhou Normal University
Hangzhou 310036, Zhejiang, P. R. China
Email address: ychen227@gmail.com
Young Joo Lee
Department of Mathematics
Chonnam National University
Gwanguu 61186, Korea
Email address: leeyj@chonnam.ac.kr

[^0]: Received April 11, 2018; Accepted May 16, 2018.
 2010 Mathematics Subject Classification. Primary 47B35; Secondary 32A37.
 Key words and phrases. commutant, Toeplitz operator, Dirichlet space.
 The first author was supported by NSFC(11771401) and ZJNSFC (LY14A010013). The second author was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education(NRF2016R1D1A3B03933949).

