• Title/Summary/Keyword: one-dimensional nanostructure

Search Result 28, Processing Time 0.029 seconds

Current Status of One-Dimensional Nanostructured Catalysts for Polymer Electrolyte Membrane Fuel Cell (고분자 전해질 막 연료 전지용 1차원 나노 구조 촉매의 연구 현황)

  • Jeon, Kiung;Jung, Yeon Sik
    • Ceramist
    • /
    • v.21 no.4
    • /
    • pp.331-348
    • /
    • 2018
  • With the expectation to overcome the problem of increasing energy consumption, polymer electrolyte membrane fuel cells are getting more attention as a promising environmentally friendly and sustainable next-generation energy conversion system. In spite of the rapid improvement of polymer electrolyte membrane fuel cells(PEMFCs), there are several critical issues still need to be resolved for practical commercialization. Out of the many issues, the main hurdle comes from oxygen reduction reaction(ORR), thus development of efficient ORR electrocatalysts is the main key for enhancing PEMFC performance. Among various catalysts, 1D nanostructured catalyst is a promising candidate because it holds many advantages that come from nanostructuring while supplementing the disadvantages of other nanostructures such as nanoparticles(0D) or gyroids(3D). This review focused on diverse 1D nanostructures and talks about their advantages as catalyst for ORR. Different 1D nanostructures will be introduced while applying the structures to different materials system showing the prospects of 1D nanostructures for improving PEMFC.

Fabrication of Micro-/Nano- Hybrid 3D Stacked Patterns (나노-마이크로 하이브리드 3차원 적층 패턴의 제조)

  • Park, Tae Wan;Jung, Hyunsung;Bang, Jiwon;Park, Woon Ik
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.6
    • /
    • pp.387-392
    • /
    • 2018
  • Nanopatterning is one of the essential nanotechnologies to fabricate electronic and energy nanodevices. Therefore, many research group members made a lot of efforts to develop simple and useful nanopatterning methods to obtain highly ordered nanostructures with functionality. In this study, in order to achieve pattern formation of three-dimensional (3D) hierarchical nanostructures, we introduce a simple and useful patterning method (nano-transfer printing (n-TP) process) consisting of various linewidths for diverse materials. Pt and $WO_3$ hybrid line structures were successfully stacked on a flexible polyimide substrate as a multi-layered hybrid 3D pattern of Pt/WO3/Pt with line-widths of $1{\mu}m$, $1{\mu}m$ and 250 nm, respectively. This simple approach suggests how to fabricate multiscale hybrid nanostructures composed of multiple materials. In addition, functional hybrid nanostructures can be expected to be applicable to various next-generation electronic devices, such as nonvolatile memories and energy harvesters.

Finite Element Analyses on the Dynamic Behavior of Piezoelectric ZnO Nanowires and Their Piezoelectric Device Application Potentials (압전 산화아연 나노와이어의 동적거동 및 압전소자 응용성)

  • Lee, Woong
    • Korean Journal of Materials Research
    • /
    • v.31 no.1
    • /
    • pp.43-53
    • /
    • 2021
  • Dynamic behavior of piezoelectric ZnO nanowires is investigated using finite element analyses (FEA) on FE models constructed based on previous experimental observations in which nanowires having aspect ratios of 1:2. 1:31, and 1:57 are obtained during a hydrothermal process. Modal analyses predict that nanowires will vibrate in lateral bending, uniaxial elongation/contraction, and twisting (torsion), respectively, for the three ratios. The natural frequency for each vibration mode varies depending on the aspect ratio, while the frequencies are in a range of 7.233 MHz to 3.393 GHz. Subsequent transient response analysis predicts that the nanowires will behave quasi-statically within the load frequency range below 10 MHz, implying that the ZnO nanowires have application potentials as structural members of electromechanical systems including nano piezoelectric generators and piezoelectric dynamic strain sensors. When an electric pulse signal is simulated, it is predicted that the nanowires will deform in accordance with the electric signal. Once the electric signal is removed, the nanowires exhibit a specific resonance-like vibration, with the frequency synchronized to the signal frequency. These predictions indicate that the nanowires have additional application potential as piezoelectric actuators and resonators.

Intracellular Electrical Stimulation on PC-12 Cells through Vertical Nanowire Electrode

  • Kim, Hyungsuk;Kim, Ilsoo;Lee, Jaehyung;Lee, Hye-young;Lee, Eungjang;Jeong, Du-Won;Kim, Ju-Jin;Choi, Heon-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.407-407
    • /
    • 2014
  • Nanotechnology, especially vertically grown silicon nanowires, has gotten great attentions in biology due to characteristics of one dimensional nanostructure; controllable synthetic structure such as lengths, diameters, densities. Silicon nanowires are promising materials as nanoelectrodes due to their highly complementary metal-oxide-semiconductor (CMOS) - and bio-compatibility. Silicon nanowires are so intoxicated that are effective for bio molecular delivery and electrical stimulation. Vertical nanowires with integrated Au tips were fabricated for electrical intracellular interfacing with PC-12 cells. We have made synthesized two types of nanowire devices; one is multi-nanowires electrode for bio molecular sensing and electrical stimulation, and the other is single-nanowires electrode respectively. Here, we demonstrate that differentiation of Nerve Growth Factor (NGF) treated PC-12 cells can be promoted depending on different magnitudes of electrical stimulation and density of Si NWs. It was fabricated by both bottom-up and top-down approaches using low pressure chemical vapor deposition (LPCVD) with high vacuuming environment to electrically stimulate PC-12 cells. The effects of electrical stimulation with NGF on the morphological differentiation are observed by Scanning Electron Microscopy (SEM), and it induces neural outgrowth. Moreover, the cell cytosol can be dyed selectively depending on the degree of differentiation along with fluorescence microscopy measurement. Vertically grown silicon nanowires have further expected advantages in case of single nanowire fabrication, and will be able to expand its characteristics to diverse applications.

  • PDF

Efficient Humidity Color Sensor Based on a Photonic Crystal with a Metal-Organic Framework (금속-유기 구조체를 이용한 포토닉 크리스탈 기반의 효율적인 습도 컬러 센서)

  • Kim, Jun Yong;Lee, Sung Hak;Do, Yun Seon
    • Korean Journal of Optics and Photonics
    • /
    • v.29 no.6
    • /
    • pp.268-274
    • /
    • 2018
  • In this study we suggest a humidity-sensitive color sensor using a one-dimensional photonic crystal and Hong Kong University of Science and Technology-1 (HKUST-1), which is a metal-organic framework (MOF) substance. One-dimensional photonic crystals have a photonic band gap, due to a periodic refractive-index change, and block and reflect light components in a specific wavelength band. The refractive index of HKUST-1 differs in dry and humid environments. Herein we designed a sensor using the presence of the photonic band gap, with FDTD simulation. As a result of optical analysis, the color conversion of the reflected light was superior to the color conversion of the transmitted light. When the center wavelength of the photonic band gap was 550 nm, the maximum peak value of the wet environment increased by a factor of about 9.5 compared to the dry environment, and the color conversion from achromatic to green was excellent as a sensor. The results of this study suggest the application of MOF materials to moisture sensors, and the nanostructure design of MOF materials will expand the applications to industrial devices.

Spindle-shaped Fe2O3 Nanoparticle Coated Carbon Nanofiber Composites for Low-cost Dye-sensitized Solar Cells (저비용 염료감응 태양전지를 위한 방추형 Fe2O3 나노입자가 코팅된 탄소나노섬유 복합체)

  • Oh, Dong-Hyeun;An, HyeLan;Koo, Bon-Ryul;Ahn, Hyo-Jin
    • Journal of Powder Materials
    • /
    • v.23 no.2
    • /
    • pp.95-101
    • /
    • 2016
  • Carbon nanofiber (CNF) composites coated with spindle-shaped $Fe_2O_3$ nanoparticles (NPs) are fabricated by a combination of an electrospinning method and a hydrothermal method, and their morphological, structural, and chemical properties are measured by field-emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. For comparison, CNFs and spindle-shaped $Fe_2O_3$ NPs are prepared by either an electrospinning method or a hydrothermal method, respectively. Dye-sensitized solar cells (DSSCs) fabricated with the composites exhibit enhanced open circuit voltage (0.70 V), short-circuit current density ($12.82mA/cm^2$), fill factor (61.30%), and power conversion efficiency (5.52%) compared to those of the CNFs (0.66 V, $11.61mA/cm^2$, 51.96%, and 3.97%) and spindle-shaped $Fe_2O_3$ NPs (0.67 V, $11.45mA/cm^2$, 50.17%, and 3.86%). This performance improvement can be attributed to a synergistic effect of a superb catalytic reaction of spindle-shaped $Fe_2O_3$ NPs and efficient charge transfer relative to the one-dimensional nanostructure of the CNFs. Therefore, spindle-shaped $Fe_2O_3$-NP-coated CNF composites may be proposed as a potential alternative material for low-cost counter electrodes in DSSCs.

Nanotube-based Dye-sensitized Solar Cells

  • Kim, Jae-Yup;Park, Sun-Ha;Choi, Jung-Woo;Shin, Jun-Young;Sung, Yung-Eun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.71-71
    • /
    • 2011
  • Dye-sensitized solar cells (DSCs) have drawn great academic attention due to their potential as low-cost renewable energy sources. DSCs contain a nanostructured TiO2 photoanode, which is a key-component for high conversion efficiency. Particularly, one-dimensional (1-D) nanostructured photoanodes can enhance the electron transport for the efficient collection to the conducting substrate in competition with the recombination processes. This is because photoelectron colletion is determined by trapping/detrapping events along the site of the electron traps (defects, surface states, grain boundaries, and self-trapping). Therefore, 1-D nanostructured photoanodes are advantageous for the fast electron transport due to their desirable features of greatly reduced intercrystalline contacts with specified directionality. In particular, anodic TiO2 nanotube (NT) electrodes recently have been intensively explored owing to their ideal structure for application in DSCs. Besides the enhanced electron transport properties resulted from the 1-D structure, highly ordered and vertically oriented nanostructure of anodic TiO2 NT can contribute additional merits, such as enhanced electrolyte diffusion, better interfacial contact with viscous electrolytes. First, to confirm the advantages of 1-D nanostructured material for the photoelectron collection, we compared the electron transport and charge recombination characteristics between nanoparticle (NP)- and nanorod (NR)-based photoanodes in DSCs by the stepped light-induced transient measurements of photocurrent and voltage (SLIM-PCV). We confirmed that the electron lifetime of the NR-based photoanode was much longer than that of the NP-based photoanode. In addition, highly ordered and vertically oriented TiO2 NT photoanodes were prepared by electrochemical anodization method. We compared the photovoltaic properties of DSCs utilizing TiO2 NT photoanodes prepared by one-step anodization and two-step anodization. And, to reduce the charge recombination rate, energy barrier layer (ZnO, Al2O3)-coated TiO2 NTs also applied in DSC. Furthermore, we applied the TiO2 NT photoanode in DSCs using a viscous electrolyte, i.e., cobalt bipyridyl redox electrolyte, and confirmed that the pore structure of NT array can enhance the performances of this viscous electrolyte.

  • PDF

CuO Nanograss as a Substrate for Surface Enhanced Raman Spectroscopy

  • Lee, Jun-Young;Park, Jiyun;Kim, Jeong-Hyun;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.249-249
    • /
    • 2013
  • Surface-enhanced Raman spectroscopy (SERS) is a sensitive approach to detect and to identify a variety of molecules. To enhance the Raman signal, optimization of the gap between nanostructures is quite important. One-dimensional materials such as nanowires, nanotubes, and nanograsses have great potential to be used in SERS due to their unique sizes and shape dependent characteristics. In this study we investigate a simple way to fabricate SERS substrates based on randomly grown copper oxide (CuO) nanowires. CuO nanograss is fabricated on pre-cleaned Cu foils. Cu oxidized in an ammonium ambient solution of 2.5 M NaOH and 0.1 M $(NH_4)_2S_2O_8$ at $4^{\circ}C$ for 10, 30, and 60 minutes. Then, Cu(OH)2 nanostructures are formed and dried at $180^{\circ}C$ for 2 h. With the drying process, the Cu(OH)2 nanostructure is transformed to CuO nanograss by dehydration reaction. CuO nanograss are grown randomly on Cu foil with the average length of 10 ${\mu}m$ and the average diameter of a 100 nm. CuO nanograsses are covered by Ag with various thicknesses from 10 to 30 nm using a thermal evaporator. Then, we immerse uncoated and Ag coated CuO nanowire samples of various oxidation times in a 0.001M methanol-based 4-mercaptopyridine (4-Mpy) in order to evaluate SERS enhancement. Raman shift and SERS enhancement are measured using a Raman spectrometer (Horiba, LabRAM ARAMIS Spectrometer) with the laser wavelength of 532 nm. Raman scattering is believed to be enhanced by the interaction between CuO nanograss and Ag island film. The gaps between Ag covered CuO nanograsses are diverse from <10 nm at the bottom to ~200 nm at the top of nanograsses. SERS signal are improved where the gaps are minimized to near 10s of nanometers. There are many spots that provide sufficiently narrow gap between the structures on randomly grown CuO nanograss surface. Then we may find optimal enhancement of Raman signal using the mapping data of average results. Fabrication of CuO nanograss based on a solution method is relatively simple and fast so this result can potentially provide a path toward cost effective fabrication of SERS substrate for sensing applications.

  • PDF