Browse > Article
http://dx.doi.org/10.5695/JKISE.2018.51.6.387

Fabrication of Micro-/Nano- Hybrid 3D Stacked Patterns  

Park, Tae Wan (Electronic Convergence Materials Division, Korea Institute of Ceramic Engineering & Technology)
Jung, Hyunsung (Electronic Convergence Materials Division, Korea Institute of Ceramic Engineering & Technology)
Bang, Jiwon (Electronic Convergence Materials Division, Korea Institute of Ceramic Engineering & Technology)
Park, Woon Ik (Electronic Convergence Materials Division, Korea Institute of Ceramic Engineering & Technology)
Publication Information
Journal of the Korean institute of surface engineering / v.51, no.6, 2018 , pp. 387-392 More about this Journal
Abstract
Nanopatterning is one of the essential nanotechnologies to fabricate electronic and energy nanodevices. Therefore, many research group members made a lot of efforts to develop simple and useful nanopatterning methods to obtain highly ordered nanostructures with functionality. In this study, in order to achieve pattern formation of three-dimensional (3D) hierarchical nanostructures, we introduce a simple and useful patterning method (nano-transfer printing (n-TP) process) consisting of various linewidths for diverse materials. Pt and $WO_3$ hybrid line structures were successfully stacked on a flexible polyimide substrate as a multi-layered hybrid 3D pattern of Pt/WO3/Pt with line-widths of $1{\mu}m$, $1{\mu}m$ and 250 nm, respectively. This simple approach suggests how to fabricate multiscale hybrid nanostructures composed of multiple materials. In addition, functional hybrid nanostructures can be expected to be applicable to various next-generation electronic devices, such as nonvolatile memories and energy harvesters.
Keywords
Nanopatterning; Nano-transfer printing; 3D nanostructure; Hybrid structure;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. Zhu, A. Chortos, Y. Wang, R. Pfattner, T. Lei, A. C. Hlnckley, I. Pochorovski, X. Yan, J. W.-F. To, J. Y. Oh, J. B.-H. Tok, Z. Bao and B. Murmann, Stretchable temperature-sensing circuits with strain suppression based on carbon nanotube transistors, Nat. Electron., 1 (2018) 183-190.   DOI
2 H.-E. Lee, H.-Y. Ahn, J. Mun, Y. Y. Lee, M. Kim, N. H. Cho, K. Chang, W. S. Kim, J. Rho and K. T. Nam, Amino-acid- and peptide-directed synthesis of chiral plasmonic gold nanoparticles, Nature, 556 (2018) 360-365.   DOI
3 Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts and R. S. Ruoff, Graphene and Graphene Oxide?: Synthesis , Properties , and Applications, Adv. Mater., 22 (2010) 3906-3924.   DOI
4 W. Seung, M. K. Gupta, K. Y. Lee, K.-S. Shin, J.-H. Lee, T. Y. Kim, S. Kim, J. Lin, J. H. Kim and S.-W. Kim, Nanopatterned textile-based wearable triboelectric nanogenerator, ACS Nano, 4 (2015) 3501-3509.
5 T. Yamada, Y. Hayamizu, Y. Yamamoto, Y. Yomogida, A. L.-Najafabadi, D. N. Futaba and K. Hata, A stretchable carbon nanotube strain sensor for human-motion detection, Nat. Nanotechnol., 6 (2011) 296-301.   DOI
6 Z. L. Wang and W. Wu, Nanotechnology-enabled energy harvesting for self-powered micro-/nanosystems, Angew. Chem. Int. Ed., 51 (2012) 11700-11721.   DOI
7 Q. H. Wang, K. K.-Zadeh, A. Kis, J. N. Coleman and M. S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nat. Nanotechnol., 7, (2012) 699-712.   DOI
8 J.-P. Colinge, C.-W. Lee, A. Afzalian, N. D. Akhavan, R. Yan, L. Ferain, P. Razavi, B. O'Neil, A. Blake, M. White, A.-M. Kelleher, B. McCarthy and R. Murphy, Nanowire transistors without junctions, Nat. Nanotechnol., 5, (2010) 225-229.   DOI
9 J. A. Defranco, B. S. Schmidt, M. Lipson and G. G. Malliaras, Photolithographic patterning of organic electronic materials, Organic Electronics, 7 (2006) 22-28.   DOI
10 X. Duan, C. Niu, V. Sahi, J. Chen, J. W. Parce, S. Empedocles and J. L. Goldman, High-performance thin-film transistors using semiconductor nanowires and nanoribbons, Nature, 425 (2003) 274-278.   DOI
11 Z. Nie and E. Kumacheva, Patterning surfaces with functional polymers, Nat. Mater., 7 (2008) 277-290.   DOI
12 Chou, S. Y., Krauss, P. R. & Renstrom, P. J. Nanoimprint lithography. J. Vac. Sci. Technol. B, 14 (1996) 4129-4133.   DOI
13 I. Maximov, E.-L. Sarwe, M. Beck, K. Deppert, M. Graczyk, M. H. Magnusson and L. Montelius, Fabrication of Si-based nanoimprint stamps with sub-20 nm features, Microelectron. Eng., 61-62 (2002) 449-454.
14 M. P. Stoykovich, H. Kang, K. Ch. Daoulas, G. Liu, C.-C. Liu, J. J. de Pablo, M. Muller and P. F. Nealey, Directed self-assembly of block copolyners for nanolithography: fabrication of isolated features and essential integrated circuit geometries, ACS Nano, 1 (2007) 168-175.   DOI
15 J. W. Jeong, S. R. Yang, Y. H. Hur, S. W. Kim, K. M. Baek, S. Yim, H.-I. Jang, J. H. Park, S. Y. Lee, C.-O. Park and Y. S. Jung, High-resolution nanotransfer printing applicable to diverse surfaces via interface-targeted adhesion switching, Nat. Commun., 5 (2014) 1-12.
16 D. O. Shin, J. H. Mun, G.-T. Hwang, J. M. Yoon, J. Y. Kim, J. M. Yoon, Y.-B. Yang, Y. Oh, J. Y. Lee, J. Shin, K. J. Lee, S. Park, J. U. Kim and S. O. Kim, Multicomponent nanopatterns by directed block copolymer self-assembly, ACS Nano, 7 (2013) 8899-8907.   DOI