Browse > Article
http://dx.doi.org/10.31613/ceramist.2018.21.4.03

Current Status of One-Dimensional Nanostructured Catalysts for Polymer Electrolyte Membrane Fuel Cell  

Jeon, Kiung (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology)
Jung, Yeon Sik (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology)
Publication Information
Ceramist / v.21, no.4, 2018 , pp. 331-348 More about this Journal
Abstract
With the expectation to overcome the problem of increasing energy consumption, polymer electrolyte membrane fuel cells are getting more attention as a promising environmentally friendly and sustainable next-generation energy conversion system. In spite of the rapid improvement of polymer electrolyte membrane fuel cells(PEMFCs), there are several critical issues still need to be resolved for practical commercialization. Out of the many issues, the main hurdle comes from oxygen reduction reaction(ORR), thus development of efficient ORR electrocatalysts is the main key for enhancing PEMFC performance. Among various catalysts, 1D nanostructured catalyst is a promising candidate because it holds many advantages that come from nanostructuring while supplementing the disadvantages of other nanostructures such as nanoparticles(0D) or gyroids(3D). This review focused on diverse 1D nanostructures and talks about their advantages as catalyst for ORR. Different 1D nanostructures will be introduced while applying the structures to different materials system showing the prospects of 1D nanostructures for improving PEMFC.
Keywords
1D nanostructure; ORR catalyst; PEMFCs;
Citations & Related Records
연도 인용수 순위
  • Reference
1 N.N. Kariuki, W.J. Khudhayer, T. Karabacak, D.J. Myers, GLAD Pt-Ni alloy nanorods for oxygen reduction reaction, ACS Catalysis, 3, 3123-3132 (2012)
2 S.W. Chou, J.J. Shyue, C.H. Chien, C.C. Chen, Y.Y. Chen, P.T. Chou, Surfactant-directed synthesis of ternary nanostructures: nanocubes, polyhedrons, octahedrons, and nanowires of PtNiFe. their shape-dependent oxygen reduction activity, Chemistry of Materials, 24, 2527-2533 (2012)   DOI
3 L.C. Liu, G. Samjeske, S. Takao, K. Nagasawa, Y. Lwasawa, Fabrication of PtCu and PtNiCu multinanorods with enhanced catalytic oxygen reduction activities, Journal of Power Sources, 253, 1-8 (2014)   DOI
4 H.H. Li, C.H. Cui, S. Zhao, H.B. Yao, M.R. Gao, F.J. Fan, S.H. Yu, Mixed-PtPd-shell PtPdCu nanoparticle nanotubes templated from copper nanowires as efficient and highly durable electrocatalysts, Advanced Energy Materials, 2, 1182-1187 (2012)   DOI
5 L. Liu, E. Pippel, Low-platinum- content quaternary PtCuCoNi nanotubes with markedly enhanced oxygen reduction activity, Angewandte Chemie International Edition, 50, 2729-2733 (2011)   DOI
6 D. Garrain, Y. Lechon, C.D.L. Rua, Polymer electrolyte membrane fuel cells (PEMFC) in automotive applications: environmental relevance of the manufacturing stage, Smart Grid Renewable Energy, 2, 68-74 (2011)   DOI
7 I. Katsounaros, S. Cherevko, A.R. Zeradjanin, K.J.J. Mayrhofer, Oxygen electrochemistry as a cornerstone for sustainable energy conversion, Angewandte Chemie-International Edition, 53, 102-121 (2014)   DOI
8 J. Greeley, I.E.L. Stephens, A.S. Bondarenko, T.P. Johansson, H.A. Hansen, T.F. Jaramillo, J. Rossmeisl, I. Chorkendorff, J.K. Norskov, Alloys of platinum and early transition metals as oxygen reduction electrocatalysts, Nature Chemistry, 1, 552-556 (2009)   DOI
9 J.K. Norskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J.R. Kitchin, T. Bligaard, H. Jonsson, Origin of the overpotential for oxygen reduction at a fuel-cell cathode, Journal of Physical Chemistry B, 108, 17886-17892 (2004)   DOI
10 K. Jiang, H.X. Zhang, S.Z. Zou, W.B. Cai, Electrocatalysis of formic acid on palladium and platinum surfaces: from fundamental mechanisms to fuel cell applications, Physical Chemistry Chemical Physics, 16, 20360-20376 (2014)   DOI
11 Y.H. Bing, H.S. Liu, L. Zhang, D. Ghosh, J.J. Zhang, Nanostructured Pt-alloy electrocatalysts for PEM fuel cell oxygen reduction reaction, Chemical Society Reviews, 39, 2184-2202 (2010)   DOI
12 M. Oezaslan, F. Hasche, P. Strasser, Pt-based core-shell catalyst architectures for oxygen fuel cell electrodes, The Journal of Physical Chemistry Letters, 4, 3273-3291 (2013)   DOI
13 S.J. Hwang, S.J. Yoo, J. Shin, Y.H. Cho, J.H. Jang, E. Cho, Y.E. Sung, S.W. Nam, T.H. Lim, S.C. Lee, S.K. Kim, Supported core@shell electrocatalysts for fuel cells: close encounter with reality, Scientific Reports, 3, 1309 (2013)   DOI
14 S.M. Alia, K. Jensen, C. Contreras, F. Garzon, B. Pivovar, Y. Yan, Platinum coated copper nanowires and Platinum nanotubes as oxygen reduction electrocatalysts, ACS Catalysis, 3, 358-362 (2013)   DOI
15 Kuttiyiel KA, et al. Bimetallic IrNi core platinum monolayer shell electrocatalysts for the oxygen reduction reaction. Energy & Environmental Science, 5, 5297-5304 (2012)   DOI
16 Stamenkovic VR, et al. Improved oxygen reduction activity on Pt3Ni (111) via increased surface site availability. Science, 315, 493-497 (2007)   DOI
17 C. Koenigsmann, S.S. Wong, One-dimensional noble metal electrocatalysts: a promising structural paradigm for direct methanol fuel cells, Energy & Environmental Science, 4, 1161-1176 (2016)
18 L. Cademartiri, G.A. Ozin, Ultrathin nanowires - A materials chemistry perspective, Advanced Materials, 21, 1013-1020 (2009)   DOI
19 J.T. Zhang, C.M. Li, Nanoporous metals: fabrication strategies and advanced electrochemical applications in catalysis, sensing and energy systems, Chemical Society Reviews, 41, 7016-7031 (2012)   DOI
20 C. Koenigsmann, W.-p. Zhou, R.R. Adzic, E. Sutter, S.S. Wong, Size-dependent enhancement of electrocatalytic performance in relatively defect-free, processed ultrathin platinum nanowires, Nano Letters, 10, 2806-2811 (2010)   DOI
21 H. Tang, Z. Qi, M. Ramani and J. F. Elter, PEM fuel cell cathode carbon corrosion due to the formation of air/fuel boundary at the anode, Journal of Power Sources, 158, 1306-1312 (2006)   DOI
22 K. K. Tintula, A. Jalajakshi, A. K. Sahu, S. Pitchumani, P. Sridhar, A. K. Shukla Durability of Pt/C and Pt/MC-PEDOT Catalysts under Simulated Start-stop Cycles in Polymer Electrolyte Fuel cells, Fuel Cells, 13, 158-166 (2013)   DOI
23 J. C. Meier, C. Galeano, I. Katsounaros, J. Witte, H. J. Bongard, A. A. Topalov, C. Baldizzone, S. Mezzavilla, F. Schith, K. J. J. Mayrhofer, Design criteria for stable Pt/C fuel cell catalysts, Beilstein Journal of Nanotechnol, 5, 44 - 67 (2014)   DOI
24 W.C. Choi, S.I. Woo, Bimetallic Pt-Ru nanowire network for anode material in a direct-methanol fuel cell, Journal of Power Sources, 124, 420-425 (2003)   DOI
25 S. Guo, S. Zhang, D. Su, S. Sun, Seed-mediated synthesis of core/shell FePtM/FePt (M = Pd, Au) nanowires and their eletrocatalysis for oxygen reduction reaction (2013)
26 S.M. Alia, K.O. Jensen, B.S. Pivovar, Y. Yan, Platinum-coated palladium nanotubes as oxygen reduction reaction electrocatalysts, ACS Catalysis, 2, 858-863 (2012)   DOI
27 C.W. Liu, Y.C. Wei, C.C. Liu, K.W. Wang, Pt-Au core/shell nanorods: preparation and applications as electrocatalysts for fuel cells, Journal of Materials Chemistry, 22, 4641-4644 (2012)   DOI
28 H. Zhu, S. Zhang, S. Guo, D. Su, S. Sun, Synthetic control of FePtM nanorods (M = Cu, Ni) to enhance the oxygen reduction reaction, Journal of the American Chemical Society, 135, 7130-7133 (2013)   DOI
29 C. Koenigsmann, A.C. Santulli, E. Sutter, S.S. Wong, Ambient surfactantless synthesis, growth mechanism, and size-dependent electrocatalytic behavior of high-quality, single crystalline palladium nanowires, ACS Nano, 5, 7471-7487 (2011)   DOI
30 S.M. Alia, K. Duong, T. Liu, K. Jensen, Y. Yan, Palladium and gold nanotubes as oxygen reduction reaction and alcohol oxidation reaction catalysts in base, ChemSusChem, 1739-1744 (2014)
31 O.-H. Kim, Y.-H. Cho, S.H. Kang, H.-Y. Park, M. Kim, J.W. Lim, D.Y. Chung, M.J. Lee, H. Choe, Y.-E. Sung, Ordered macroporous platinum electrode and enhanced mss transfer in fuel cells using inverse opal structure, Nature Communication, 4, 2473, (2013)   DOI
32 C. Chen, Y. J. Kang, Z. Y. Huo,Z. W. Zhu, W. Y. Huang, H. L. L. Xin, J. D. Snyder, D. G. Li,J. A. Herron, M. Mavrikakis, M. F. Chi, K. L. More, Y. D. Li,N. M. Markovic, G. A. Somorjai, P. D. Yang, Highly crystalline multimetallic nanoframes with threedimensional electrocatalytic surfaces, Science, 343, 1339-1343 (2014)   DOI
33 P.J. Ferreira, G.J. la O', Y. Shao-Horn, D. Morgan, R. Makharia, S. Kocha, H.A. Gasteiger, Instability of Pt/C electrocatalysts in proton exchange membrane fuel cells: A mechanistic investigation, Journal of the Electrochemical Society, 152, A2256-A2271 (2005)   DOI
34 S.H. Sun, G.X. Zhang, D.S. Geng, Y.G. Chen, R.Y. Li, M. Cai, X.L. Sun, A highly durable platinum nanocatalyst for proton exchange membrane fuel cells: multiarmed starlike nanowire single crystal, Angewandte Chemie-International Edition, 50, 422-426 (2011)   DOI
35 J. Kibsgaard, Y. Gorlin, Z. Chen, T. F. Jaramillo, Meso-structured platinum thin film: Active and stable electrocatalysts for the oxygen reduction reaction, Journal of the American Chemical Society, 134, 7758-7765 (2012)   DOI
36 S.M. Choi, J.H. Kim, J.Y. Jung, E.Y. Yoon, W.B. Kim, Pt nanowires prepared via a polymer template method: Its promise toward high Pt-loaded electrocatalysts for methanol oxidation, Electrochimica Acta, 53, 5804-5811 (2008)   DOI
37 G.Y. Zhao, C.L. Xu, D.J. Guo, H. Li, H.L. Li, Template preparation of Pt nanowire array electrode on Ti/Si substrate for methanol electro-oxidation, Applied Surface Science, 253, 3242-3246 (2007)   DOI
38 F.J. Yu, W.Z. Zhou, R.M. Bellabarba, R.P. Tooze, One-step synthesis and shape-control of CuPd nanowire networks, Nanoscale, 6, 1093-1098 (2014)   DOI
39 Z. Zhang, K.L. More, K. Sun, Z. Wu, W. Li, Preparation and characterization of PdFe nanoleaves as electrocatalysts for oxygen reduction reaction, Chemistry of Materials, 23, 1570-1577 (2011)   DOI
40 L.X. Ding, G.R. Li, Z.L. Wang, Z.Q. Liu, H. Liu, Y.X. Tong, Porous Ni@Pt core-shell nanotube array electrocatalyst with high activity and stability for methanol oxidation, Chemistry-A European Journal, 18, 8386-8391 (2012)   DOI
41 Y. Lee, J. Kim, D.S. Yun, Y.S. Nam, Y. Shao-Horn, A.M. Belcher, Virus-templated Au and Au-Pt coreshell nanowires and their electrocatalytic activities for fuel cell applications, Energy & Environmental Science, 5, 8328-8334 (2012)   DOI
42 X.F. Lu, C. Wang, Y. Wei, One-dimensional composite nanomaterials: synthesis by electrospinning and their applications, Small, 5 2349-2370 (2009)   DOI
43 S. Du, Pt-based nanowires as electrocatalysts in proton exchange fuel cells, International Journal of Low-Carbon Technologies, 7, 44-54 (2012)   DOI
44 A.C. Chen, P. Holt-Hindle, Platinum-based nanostructured materials: synthesis, properties, and applications, Chemical Reviews, 110, 3767-3804 (2010)   DOI
45 Y. Liu, D.G. Li, S.S. Sun, Pt-based composite nanoparticles for magnetic, catalytic, and biomedical applications, Journal of Materials Chemistry, 21, 12579-12587 (2011)   DOI
46 Y.Z. Lu, Y.C. Wang, W. Chen, Silver nanorods for oxygen reduction: Strong effects of protecting ligand on the electrocatalytic activity, Journal of Power Sources, 196, 3033-3038 (2011)   DOI
47 W. Sun, A. Hsu, R.R. Chen, Palladium-coated manganese dioxide catalysts for oxygen reduction reaction in alkaline media, Journal of Power Sources, 196, 4491-4498 (2011)   DOI
48 X.R. Li, X.L. Li, M.C. Xu, J.J. Xu, H.Y. Chen, Gold nanodendrities on graphene oxide nanosheets for oxygen reduction reaction, Journal of Materials Chemistry A, 2, 1697-1703 (2014)   DOI
49 C. Koenigsmann, E. Sutter, T.A. Chiesa, R.R. Adzic, S.S. Wong, Highly enhanced electrocatalytic oxygen reduction performance observed in bimetallic palladium-based nanowires prepared under ambient, surfactantless conditions, Nano Letters, 12, 2013-2020 (2012)   DOI
50 S. Liu, Z. Zhang, J. Bao, Y. Lan, W. Tu, M. Han, Z. Dai, Controllable synthesis of tetragonal and cubic phase $Cu_2Se$ nanowires assembled by small nanocubes and their electrocatalytic performance for oxygen reduction reaction, The Journal of Physical Chemistry C, 117, 15164-15173 (2013)   DOI
51 Z. Yang, X.M. Zhou, H.G. Nie, Z. Yao, S.M. Huang, Facile construction of manganese oxide doped carbon nanotube catalysts with high activity for oxygen reduction reaction and investigations into the origin of their activity enhancement, ACS Applied Materials & Interfaces, 3, 2601-2606 (2011)   DOI
52 Q. Xiao, M. Cai, M. Balogh, M. Tessema, Y. Lu, Symmetric growth of Pt ultrathin nanowires from dumbbell nuclei for use as oxygen reduction catalysts, Nano Research, 5, 145-151 (2012)   DOI
53 M.L. Calegaro, H.B. Suffredini, S.A.S. Machado, L.A. Avaca, Preparation, characterization and utilization of a new electrocatalyst for ethanol oxidation obtained by the sol-gel method, Journal of Power Sources, 156, 300-305 (2006)   DOI
54 M.R. Gao, J. Jiang, S.H. Yu, Solution-based synthesis and design of late transition metal chalcogenide materials for oxygen reduction reaction (ORR), Small, 8,13-27 (2012)   DOI
55 S. Sun, D. Yang, G. Zhang, E. Sacher, J.P. Dodelet, Synthesis and characterization of platinum nanowire-carbon nanotube heterostructures, Chemistry of Materials, 19, 6376-6378 (2007)   DOI
56 W.J. Khudhayer, N.N. Kariuki, X.P. Wang, D.J. Myers, A.U. Shaikh, T. Karabacak, Oxygen reduction reaction electrocatalytic activity of glancing angle deposited Platinum nanorod arrays, Journal of the Electrochemical Society, 158, B1029-B1041 (2011)   DOI
57 J. Xu, G. Fu, Y. Tang, Y. Zhou, Y. Chen, T. Lu, One-pot synthesis of three-dimensional platinum nanochain networks as stable and active electrocatalysts for oxygen reduction reactions, Journal of Materials Chemistry, 22, 13585-13590 (2012)   DOI
58 L.Y. Ruan, E.B. Zhu, Y. Chen, Z.Y. Lin, X.Q. Huang, X.F. Duan, Y. Huang, Biomimetic synthesis of an ultrathin platinum nanowire network with a high twin density for enhanced electrocatalytic activity and durability, Angewandte Chemie-International Edition, 52, 12577-12581 (2013)   DOI
59 T.N. Lambert, D.J. Davis, W. Lu, S.J. Limmer, P.G. Kotula, A. Thuli, M. Hungate, G.D. Ruan, Z. Jin, J.M. Tour, Graphene-Ni-${\alpha}$-MnO2 and -Cu-${\alpha}$-MnO2 nanowire blends as highly active non-precious metal catalysts for the oxygen reduction reaction, Chemical Communications, 48, 7931-7933 (2012)   DOI
60 J.S. Lee, G.S. Park, H.I. Lee, S.T. Kim, R.G. Cao, M.L. Liu, J. Cho, Ketjenblack carbon supported amorphous manganese oxides nanowires as highly efficient electrocatalyst for oxygen reduction reaction in alkaline solutions, Nano Letters, 11, 5362-5366 (2011)   DOI
61 G. Tuci, C. Zafferoni, P. D'Ambrosio, S. Caporali, M. Ceppatelli, A. Rossin, T. Tsoufis, M. Innocenti, G. Giambastiani, Tailoring carbon nanotube N-dopants while designing metal-free electrocatalysts for the oxygen reduction reaction in alkaline medium, ACS Catalysis, 3, 2108-2111 (2013)   DOI
62 A. Zhao, J. Masa, W. Schuhmann, W. Xia, Activation and stabilization of nitrogen-doped carbon nanotubes as electrocatalysts in the oxygen reduction reaction at strongly alkaline conditions, The Journal of Physical Chemistry C, 117, 24283-24291 (2013)   DOI
63 H.T. Chung, D.A. Cullen, D. Higgins, B.T. Sneed, E.F. Holby, K.L. More, P. Zelenay, Direct atomiclevel insight into the active sites of a high-performance PGM-free ORR catalyst, Science, 357, 479-483 (2017)   DOI
64 W.H. Lee, H. Kim, Electrocatalytic activity and durability study of carbon supported Pt nanodendrites in polymer electrolyte membrane fuel cells, International Journal of Hydrogen Energy, 38, 7126-7132 (2013)   DOI
65 M.-T. Sung, M.-H. Chang, M.-H. Ho, Investigation of cathode electrocatalysts composed of electrospun Pt nanowires and Pt/C for proton exchange membrane fuel cells, Journal of Power Sources, 249, 320-326 (2014)   DOI
66 R. Carrera-Cerritos, V. Baglio, A.S. Arico, J. Ledesma-Garcia, M.F. Sgroi, D. Pullini, A.J. Pruna, D.B. Mataix, R. Fuentes-Ramirez, L.G. Arriaga, Improved Pd electro-catalysis for oxygen reduction reaction in direct methanol fuel cell by reduced graphene oxide, Applied Catalysis B: Environmental, 144, 554-560 (2014)   DOI
67 A.B. Papandrew, R.W. Atkinson, G.A. Goenaga, S.S. Kocha, J.W. Zack, B.S. Pivovar, T.A. Zawodzinski, Oxygen reduction activity of vapor-grown platinum nanotubes, Journal of the Electrochemical Society, 160, F848-F852 (2013)   DOI
68 S.M. Alia, G. Zhang, D. Kisailus, D. Li, S. Gu, K. Jensen, Y. Yan, Porous platinum nanotubes for oxygen reduction and methanol oxidation reactions, Advanced Functional Materials, 20, 3742-3746 (2010)   DOI
69 S. Ci, J. Zou, G. Zeng, S. Luo, Z. Wen, Single crystalline Pt nanotubes with superior electrocatalytic stability, Journal of Materials Chemistry, 22, 16732-16737 (2012)   DOI
70 C. Koenigsmann, M.E. Scofield, H. Liu, S.S. Wong, Designing enhanced one-dimensional electrocatalysts for the oxygen reduction reaction: probing size- and composition-dependent electrocatalytic behavior in noble metal nanowires, The Journal of Physical Chemistry Letters, 3, 3385-3398 (2012)   DOI
71 Z. Zhu, Y. Zhai, C. Zhu, Z. Wang, S. Dong, Bimetallic alloy nanowires and nanosponges: A comparative study of peroxidase mimetics and as enhanced catalysts for oxygen reduction reaction, Electrochemistry Communications, 36, 22-25 (2013)   DOI
72 Y.Z. Lu, Y.Y. Jiang, W. Chen, PtPd porous nanorods with enhanced electrocatalytic activity and durability for oxygen reduction reaction, Nano Energy, 2, 836-844 (2013)   DOI
73 S.F. Du, B. Millington, B.G. Pollet, The effect of Nafion ionomer loading coated on gas diffusion electrodes with in-situ grown Pt nanowires and their durability in proton exchange membrane fuel cells, International Journal of Hydrogen Energy, 36, 4386-4393 (2011)   DOI
74 B. Li, D.C. Higgins, Q.F. Xiao, D.J. Yang, C.M. Zhng, M. Cai, Z.W. Chen, J.X. Ma, The durability of carbon supported Pt nanowire as novel cathode catalyst for a 1.5 kW PEMFC stack, Applied Catalysis B-Environmental, 162, 133-140 (2015)   DOI
75 M.K. Debe, Nanostructured thin film electrocatalysts for PEM fuel cells - A tutorial on the fundamental characteristics and practical properties of NSTF Catalysts, Tutorials on Electrocatalysis in Low Temperature Fuel Cells, 45, 47-68 (2012)
76 S.F. Du, A facile route for polymer electrolyte membrane fuel cell electrodes with in situ grown Pt nanowires, Journal of Power Sources, 195, 289-292 (2010)   DOI
77 S.F. Du, B.G. Pollee, Catalyst loading for Pt-nanowire thin film electrodes in PEFCs, International Journal of Hydrogen Energy, 37, 17892-17898 (2012)   DOI
78 S.F. Du, K.J. Lin, S.K. Malladi, Y.X. Lu, S.H. Sun, Q. Xu, R. Steinberger-Wilckens, H.S. Dong, Plasma nitriding induced growth of Pt-nanowire arrays as high performance electrocatalysts for fuel cells, Scientific Reports, 4, 6439 (2014)
79 M. Irani, M. Fan, H. Ismail, A. Tuwati, B. Dutcher, A.G. Russell, Modified nanosepiolite as an inexpensive support of tetraethylenepentamine for $CO_2$ sorption, Nano Energy, 11, 235-246 (2015)   DOI
80 G.A. Florides, P. Christodoulides, Global warming and carbon dioxide through sciences, Environment International, 35, 390-401 (2009)   DOI
81 J. Stacy, Y.N. Regmi, B. Leonard, M. Fan, The recent progress and future of oxygen reduction reaction catalysis: A review, Renewable and Sustainable Energy Reviews, 69, 401-414 (2017)   DOI
82 R. O'Hayre, S.-W. Cha, W. Colella, F.B. Prinz, Fuel cell fundamentals, John Wiley & Sons (2006)
83 Y. Li, J. Yang, J. Song, Structure models and nano energy system design for proton exchange membrane fuel cells in electric energy vehicles, Renewable and Sustainable Energy Review, 67, 160-172 (2017)   DOI
84 W.T. Yu, M.D. Porosoff, J.G.G. Chen, Review of Pt-based bimetallic catalysis: from model surfaces to supported catalysts, Chemical Reviews, 112, 5780-5817 (2012)   DOI
85 T.H. Yeh, C.W. Liu, H.S. Chen, K.W. Wang, Preparation of carbon-supported PtM (M = Au, Pd, or Cu) nanorods and their application in oxygen reduction reaction, Electrochemistry Communications, 31, 125-128 (2013)   DOI
86 Y.C. Tseng, H.S. Chen, C.W. Liu, T.H. Yeh, K.W. Wang, The effect of alloying on the oxygen reduction reaction activity of carbon-supported PtCu and PtPd nanorods, Journal of Materials Chemistry A, 2, 4270-4275 (2014)   DOI
87 Z. Duan, G. Wang, A first principles study of oxygen reduction reaction on a Pt(111) surface modified by a subsurface transition metal M (M = Ni, Co, or Fe), Physical Chemistry Chemical Physics, 13, 20178-20187 (2011)   DOI
88 J.I. Shui, C. Chen, J.C.M. Li, Evolution of nanoporous Pt-Fe alloy nanowires by dealloying and their catalytic property for oxygen reduction reaction, Advanced Functional Materials, 21, 3357-3362 (2011)   DOI
89 B.D. James, J. Kalinoski, K, Baum, Manufacturing Cost Analysis of Fuel Cell Systems; U.S. DOE Hydrogen Program Annual Merit Review and Peer Evaluation, U.S. Department of Energy, Arlington, VA, USA, (2011)
90 I.E.L. Stephens, A.S. Bondarenko, U. Gronbjerg, J. Rossmeisl, I. Chorkendorff, Understanding the electrocatalysis of oxygen reduction on platinum and its alloys, Energy & Environmental Science, 5, 6744-6762 (2012)   DOI
91 Z. Zhang, M. Li, Z. Wu, W. Li, Ultra-thin PtFe-nanowires as durable electrocatalysts for fuel cells, Nanotechnology, 22, 015602 (2011)   DOI
92 S.J. Guo, D.G. Li, H.Y. Zhu, S. Zhang, N.M. Markovic, V.R. Stamenkovic, S.H. Sun, FePt and CoPt nanowires as efficient catalysts for the oxygen reduction reaction, Angewandte Chemie-International Edition, 52, 3465-3468 (2013)   DOI
93 N. Yousfi-Steiner, P. Mocoteguy, D. Candusso, D. Hissel, A review on polymer electrolyte membrane fuel cell catalyst degradation and starvation issues: Causes, consequences and diagnostic for mitigation, Journal of Power Sources, 194, 130-145 (2009)   DOI
94 M.K. Debe, Electrocatalyst approaches and challenges for automotive fuel cells, Nature, 486, 43-51 (2012)   DOI
95 P.J. Ferreira, G.J. la O', Y. Shao-Horn, D. Morgan, R. Makharia, S. Kocha, H.A. Gasteiger, Instability of Pt/C electrocatalysts in proton exchange membrane fuel cells - A mechanistic investigation, Journal of the Electrochemical Society, 152, A2256-A2271 (2005)   DOI