Browse > Article
http://dx.doi.org/10.4150/KPMI.2016.23.2.95

Spindle-shaped Fe2O3 Nanoparticle Coated Carbon Nanofiber Composites for Low-cost Dye-sensitized Solar Cells  

Oh, Dong-Hyeun (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
An, HyeLan (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Koo, Bon-Ryul (Program of Materials Science & Engineering, Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology)
Ahn, Hyo-Jin (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Publication Information
Journal of Powder Materials / v.23, no.2, 2016 , pp. 95-101 More about this Journal
Abstract
Carbon nanofiber (CNF) composites coated with spindle-shaped $Fe_2O_3$ nanoparticles (NPs) are fabricated by a combination of an electrospinning method and a hydrothermal method, and their morphological, structural, and chemical properties are measured by field-emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. For comparison, CNFs and spindle-shaped $Fe_2O_3$ NPs are prepared by either an electrospinning method or a hydrothermal method, respectively. Dye-sensitized solar cells (DSSCs) fabricated with the composites exhibit enhanced open circuit voltage (0.70 V), short-circuit current density ($12.82mA/cm^2$), fill factor (61.30%), and power conversion efficiency (5.52%) compared to those of the CNFs (0.66 V, $11.61mA/cm^2$, 51.96%, and 3.97%) and spindle-shaped $Fe_2O_3$ NPs (0.67 V, $11.45mA/cm^2$, 50.17%, and 3.86%). This performance improvement can be attributed to a synergistic effect of a superb catalytic reaction of spindle-shaped $Fe_2O_3$ NPs and efficient charge transfer relative to the one-dimensional nanostructure of the CNFs. Therefore, spindle-shaped $Fe_2O_3$-NP-coated CNF composites may be proposed as a potential alternative material for low-cost counter electrodes in DSSCs.
Keywords
Carbon nanofibers; Iron oxides; Counter electrode; Dye-sensitized solar cells;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 K. H. Ko, Y. C. Lee and Y. J. Jung: J. Colloid Interface Sci., 283 (2005) 482.   DOI
2 N. Kakuta, T. Oku, A. Suzuki, K. Kikuchi and S. Kikuchi: J. Ceram. Process. Res., 13 (2012) 28.
3 H. Sun, Y. Luo, Y. Zhang, D. Li, Z. Yu, K. Li and Q. Meng: J. Phys. Chem. C, 114 (2010) 11673.   DOI
4 S. I. Noh, T.-Y. Seong and H.-J. Ahn: J. Ceram. Process. Res., 13 (2012) 491.
5 S.-H. Park, H.-R. Jung and W.-J. Lee: Electrochim. Acta, 102 (2013) 423.   DOI
6 M. Ye, X. Wen, M. Wang, J. Iocozzia, N. Zhang, C. Lin and Z. Lin: Mater. Today, 18 (2015) 155.   DOI
7 H. L. An, G.-H. An and H.-J. Ahn: J. Ceram. Process. Res., 16 (2015) 208.
8 G.-H. An and H.-J. Ahn: ECS Solid State Lett., 3 (2014) M29.   DOI
9 D. Sebastian, V. Baglio, M. Girolamo, R. Moliner, M. J. Lazaro and A. S. Arico: J. Power Sources, 250 (2014) 242.   DOI
10 K. Saranya, A. Subramania, N. Sivasankar and S. Mallick: Mater. Res. Bull., 75 (2016) 83.   DOI
11 M. Rameez, K. Saranya, A. Subramania, N. Sivasankar and S. Mallick: Appl. Phys. A, 122 (2016) 71.
12 T. Sugimoto, Y. Wang, H. Itoh and A. Muramatsu: Colloids Surf. A: Physicochem. Eng. Asp., 134 (1998) 265.   DOI
13 T. P. Almeida, M. W. Fay, Y. Zhu and P. D. Brown: Nanoscale, 2 (2010) 2390.   DOI
14 Z. He, W. Que, P. Sun and J. Ren: ACS Appl. Mater. Interfaces, 5 (2013) 12779.   DOI
15 Y. Hou, D. Wang, X. H. Yang, W. Q. Fang, B. Zhang, H. F. Wang, G. Z. Lu, P. Hu, H. F. Zhao and H. G. Yang: Nat. Commun., 4 (2013) 1583.   DOI
16 A. Hauch and A. Gerog: Electrochim. Acta, 46 (2001) 3457.   DOI
17 Z. Zhang, F. Zhou and E. J. Lavernia: Metall. Mater. Trans. A, 34A (2003) 1349.
18 H. L. An, G.-H. An and H.-J. Ahn: J. Alloys Compd., 645 (2015) 317.   DOI
19 J. S. Kim, P. K. H. Ho, D. S. Thomas, R. H. Friend, F. Cacialli, G.-W. Bao and S. F. Y. Li: Chem. Phys. Lett., 315 (1999) 307.   DOI
20 V. Datsyuk, M. Kalyva, K. Papagelis, J. Parthenios, D. Tasis, A. Siokou, I. Kallitsis and C. Galiotis: Carbon, 46 (2008) 833.   DOI
21 R. Suresh, K. Giribabu, R. Manigandan, A. Stephen and V. Narayana: RSC Adv., 4 (2014) 17146.   DOI
22 S. Yan, S. Ge, Y. Zuo, W. Qiao and L. Zhang: Scr. Mater., 61 (2009) 387.   DOI
23 Y. Xiao, G. Han, H. Zhou, Y. Li and J.-Y. Lin: Electrochim. Acta, 155 (2015) 103.   DOI
24 W. Yang, X. Xu, Z. Li, F. Yang, L. Zhang, Y. Li, A. Wang and S. Chen: Carbon, 96 (2016) 947.   DOI
25 R. Gupta, R. Kumar, A. Sharma and N. Verma: Int. J. Energy Res., 39 (2015) 668.   DOI
26 C. Thelander, P. Agarwal, S. Brongersma, J. Eymery, L. F. Feiner, A. Forchel, M. Scheffler, W. Riess, B. J. Ohlsson, U. Gosele and L. Samuelson: Mater. Today, 9 (2006) 28.
27 H.-R. An, H. L. An, W.-B. Kim and H.-J. Ahn: ECS Solid State Lett., 3 (2014) M33.   DOI
28 Z. Tang and N. A. Kotov: Adv. Mater., 17 (2005) 951.   DOI