DOI QR코드

DOI QR Code

Spindle-shaped Fe2O3 Nanoparticle Coated Carbon Nanofiber Composites for Low-cost Dye-sensitized Solar Cells

저비용 염료감응 태양전지를 위한 방추형 Fe2O3 나노입자가 코팅된 탄소나노섬유 복합체

  • Oh, Dong-Hyeun (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • An, HyeLan (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Koo, Bon-Ryul (Program of Materials Science & Engineering, Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology) ;
  • Ahn, Hyo-Jin (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • 오동현 (서울과학기술대학교 신소재공학과) ;
  • 안혜란 (서울과학기술대학교 신소재공학과) ;
  • 구본율 (서울과학기술대학교 의공학-바이오소재 융합 협동과정 신소재공학프로그램) ;
  • 안효진 (서울과학기술대학교 신소재공학과)
  • Received : 2016.04.06
  • Accepted : 2016.04.25
  • Published : 2016.04.28

Abstract

Carbon nanofiber (CNF) composites coated with spindle-shaped $Fe_2O_3$ nanoparticles (NPs) are fabricated by a combination of an electrospinning method and a hydrothermal method, and their morphological, structural, and chemical properties are measured by field-emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. For comparison, CNFs and spindle-shaped $Fe_2O_3$ NPs are prepared by either an electrospinning method or a hydrothermal method, respectively. Dye-sensitized solar cells (DSSCs) fabricated with the composites exhibit enhanced open circuit voltage (0.70 V), short-circuit current density ($12.82mA/cm^2$), fill factor (61.30%), and power conversion efficiency (5.52%) compared to those of the CNFs (0.66 V, $11.61mA/cm^2$, 51.96%, and 3.97%) and spindle-shaped $Fe_2O_3$ NPs (0.67 V, $11.45mA/cm^2$, 50.17%, and 3.86%). This performance improvement can be attributed to a synergistic effect of a superb catalytic reaction of spindle-shaped $Fe_2O_3$ NPs and efficient charge transfer relative to the one-dimensional nanostructure of the CNFs. Therefore, spindle-shaped $Fe_2O_3$-NP-coated CNF composites may be proposed as a potential alternative material for low-cost counter electrodes in DSSCs.

Keywords

References

  1. K. H. Ko, Y. C. Lee and Y. J. Jung: J. Colloid Interface Sci., 283 (2005) 482. https://doi.org/10.1016/j.jcis.2004.09.009
  2. N. Kakuta, T. Oku, A. Suzuki, K. Kikuchi and S. Kikuchi: J. Ceram. Process. Res., 13 (2012) 28.
  3. H. Sun, Y. Luo, Y. Zhang, D. Li, Z. Yu, K. Li and Q. Meng: J. Phys. Chem. C, 114 (2010) 11673. https://doi.org/10.1021/jp1030015
  4. S. I. Noh, T.-Y. Seong and H.-J. Ahn: J. Ceram. Process. Res., 13 (2012) 491.
  5. S.-H. Park, H.-R. Jung and W.-J. Lee: Electrochim. Acta, 102 (2013) 423. https://doi.org/10.1016/j.electacta.2013.04.044
  6. M. Ye, X. Wen, M. Wang, J. Iocozzia, N. Zhang, C. Lin and Z. Lin: Mater. Today, 18 (2015) 155. https://doi.org/10.1016/j.mattod.2014.09.001
  7. H. L. An, G.-H. An and H.-J. Ahn: J. Ceram. Process. Res., 16 (2015) 208.
  8. G.-H. An and H.-J. Ahn: ECS Solid State Lett., 3 (2014) M29. https://doi.org/10.1149/2.0061407ssl
  9. D. Sebastian, V. Baglio, M. Girolamo, R. Moliner, M. J. Lazaro and A. S. Arico: J. Power Sources, 250 (2014) 242. https://doi.org/10.1016/j.jpowsour.2013.10.142
  10. K. Saranya, A. Subramania, N. Sivasankar and S. Mallick: Mater. Res. Bull., 75 (2016) 83. https://doi.org/10.1016/j.materresbull.2015.11.028
  11. M. Rameez, K. Saranya, A. Subramania, N. Sivasankar and S. Mallick: Appl. Phys. A, 122 (2016) 71.
  12. T. Sugimoto, Y. Wang, H. Itoh and A. Muramatsu: Colloids Surf. A: Physicochem. Eng. Asp., 134 (1998) 265. https://doi.org/10.1016/S0927-7757(97)00103-9
  13. T. P. Almeida, M. W. Fay, Y. Zhu and P. D. Brown: Nanoscale, 2 (2010) 2390. https://doi.org/10.1039/c0nr00280a
  14. Z. He, W. Que, P. Sun and J. Ren: ACS Appl. Mater. Interfaces, 5 (2013) 12779. https://doi.org/10.1021/am4044745
  15. Y. Hou, D. Wang, X. H. Yang, W. Q. Fang, B. Zhang, H. F. Wang, G. Z. Lu, P. Hu, H. F. Zhao and H. G. Yang: Nat. Commun., 4 (2013) 1583. https://doi.org/10.1038/ncomms2547
  16. A. Hauch and A. Gerog: Electrochim. Acta, 46 (2001) 3457. https://doi.org/10.1016/S0013-4686(01)00540-0
  17. Z. Zhang, F. Zhou and E. J. Lavernia: Metall. Mater. Trans. A, 34A (2003) 1349.
  18. H. L. An, G.-H. An and H.-J. Ahn: J. Alloys Compd., 645 (2015) 317. https://doi.org/10.1016/j.jallcom.2015.05.105
  19. J. S. Kim, P. K. H. Ho, D. S. Thomas, R. H. Friend, F. Cacialli, G.-W. Bao and S. F. Y. Li: Chem. Phys. Lett., 315 (1999) 307. https://doi.org/10.1016/S0009-2614(99)01233-6
  20. V. Datsyuk, M. Kalyva, K. Papagelis, J. Parthenios, D. Tasis, A. Siokou, I. Kallitsis and C. Galiotis: Carbon, 46 (2008) 833. https://doi.org/10.1016/j.carbon.2008.02.012
  21. R. Suresh, K. Giribabu, R. Manigandan, A. Stephen and V. Narayana: RSC Adv., 4 (2014) 17146. https://doi.org/10.1039/c4ra00725e
  22. S. Yan, S. Ge, Y. Zuo, W. Qiao and L. Zhang: Scr. Mater., 61 (2009) 387. https://doi.org/10.1016/j.scriptamat.2009.04.022
  23. Y. Xiao, G. Han, H. Zhou, Y. Li and J.-Y. Lin: Electrochim. Acta, 155 (2015) 103. https://doi.org/10.1016/j.electacta.2015.01.004
  24. W. Yang, X. Xu, Z. Li, F. Yang, L. Zhang, Y. Li, A. Wang and S. Chen: Carbon, 96 (2016) 947. https://doi.org/10.1016/j.carbon.2015.10.059
  25. R. Gupta, R. Kumar, A. Sharma and N. Verma: Int. J. Energy Res., 39 (2015) 668. https://doi.org/10.1002/er.3279
  26. C. Thelander, P. Agarwal, S. Brongersma, J. Eymery, L. F. Feiner, A. Forchel, M. Scheffler, W. Riess, B. J. Ohlsson, U. Gosele and L. Samuelson: Mater. Today, 9 (2006) 28.
  27. H.-R. An, H. L. An, W.-B. Kim and H.-J. Ahn: ECS Solid State Lett., 3 (2014) M33. https://doi.org/10.1149/2.0061408ssl
  28. Z. Tang and N. A. Kotov: Adv. Mater., 17 (2005) 951. https://doi.org/10.1002/adma.200401593

Cited by

  1. Ni Nanoparticles-Graphitic Carbon Nanofiber Composites for Pt-Free Counter Electrode in Dye-Sensitized Solar Cells vol.26, pp.11, 2016, https://doi.org/10.3740/MRSK.2016.26.11.649