Browse > Article
http://dx.doi.org/10.3740/MRSK.2021.31.1.43

Finite Element Analyses on the Dynamic Behavior of Piezoelectric ZnO Nanowires and Their Piezoelectric Device Application Potentials  

Lee, Woong (School of Materials Science and Engineering, Changwon National University)
Publication Information
Korean Journal of Materials Research / v.31, no.1, 2021 , pp. 43-53 More about this Journal
Abstract
Dynamic behavior of piezoelectric ZnO nanowires is investigated using finite element analyses (FEA) on FE models constructed based on previous experimental observations in which nanowires having aspect ratios of 1:2. 1:31, and 1:57 are obtained during a hydrothermal process. Modal analyses predict that nanowires will vibrate in lateral bending, uniaxial elongation/contraction, and twisting (torsion), respectively, for the three ratios. The natural frequency for each vibration mode varies depending on the aspect ratio, while the frequencies are in a range of 7.233 MHz to 3.393 GHz. Subsequent transient response analysis predicts that the nanowires will behave quasi-statically within the load frequency range below 10 MHz, implying that the ZnO nanowires have application potentials as structural members of electromechanical systems including nano piezoelectric generators and piezoelectric dynamic strain sensors. When an electric pulse signal is simulated, it is predicted that the nanowires will deform in accordance with the electric signal. Once the electric signal is removed, the nanowires exhibit a specific resonance-like vibration, with the frequency synchronized to the signal frequency. These predictions indicate that the nanowires have additional application potential as piezoelectric actuators and resonators.
Keywords
one-dimensional nanostructure; piezoelectricity; dynamic behavior; energy harvesting; ZnO;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. Janotti and C. G. Van de Walle, Rep. Prog. Phys., 72, 126501 (2009).   DOI
2 C. W. Litton, D. C. Reynolds and T. C. Collins, Zinc Oxide Materials for Electronic and Optoelectronic Device Applications, p. 265, 1st ed., John Wiley & Sons, New York (2011).
3 U. Ozgur, D. Hofstetter and H. Morkoc, Proc. IEEE, 98, 1255 (2010).   DOI
4 S. Bagga, J. Akhtar and S. Mishra, AIP Conf. Proc., 1989, 020004 (2018).
5 R. Zhu and R. Yang, Synthesis and Characterization of Piezotronic Materials for Application in Strain/Stress Sensing, p. 39, Springer Nature, Cham, Switzerland (2018).
6 S. Xu, Y. Qin, C. Xu, Y. Wei, R. Yang and Z. L. Wang, Nat. Nanotechnol., 5, 366 (2010).   DOI
7 H. J. Lee, S. Y. Chung, Y. S. Kim and T. I. Lee, Nano Energy, 38, 232 (2017).   DOI
8 B. Kumar, K. Y. Lee, H. K. Park, S. J. Chae, Y. H. Lee and S. W. Kim, ACS Nano, 5, 4197 (2011).   DOI
9 M. Son, H. Jang, M.-S. Lee, T.-H. Yoon, B. H. Lee, W. Lee and M.-H. Ham, Adv. Mater. Technol., 3, 1700355 (2018).   DOI
10 W. Lee, Korean J. Mater. Res., 28, 671 (2018).   DOI
11 H. D. Espinosa, R. A. Bernal and M. Minary-Jolandan, Adv. Mater., 24, 4656 (2012).   DOI
12 A. B. Djurisic, A. M. C. Ng and X. Y. Chen, Progr. Quant. Electron., 34, 191 (2010).   DOI
13 J. Zhang, C. Wang and S. Adhikari, J. Appl. Phys., 114, 174306 (2013).   DOI
14 K.-H. Kim, B. Kumar, K. Y. Lee, H.-K. Park, J.-H. Lee, H. H. Lee, H. Jun, D. Lee and S.-W. Kim, Sci. Rep., 3, 2017 (2013).   DOI
15 R. Araneo, F. Bini, M. Pea, A. Notargiacomo, A. Rinaldi, G. Lovat and S. Celozzi, IEEE Trans. Nanotechnol., 13, 724 (2014).   DOI
16 L. Serairi, D. Yu and Y. Leprince-Wang, Phys. Status Solidi C, 13, 1 (2016).
17 M. L. James, G. M. Smith and J. C. Wolford, Vibration of Mechanical and Structural Systems, p. 44, 2nd ed., Harper & Row, New York (1989).
18 W. H. H. Oo, L. V. Saraf, M. H. Engelhard, V. Shuttanandan, L. Bergman, J. Huso and M. D. McCluskey, J. Appl. Phys., 105, 013715 (2009).   DOI
19 K. Nakamura, S. Higuchi and T. Ohnuma, J. Appl. Phys., 119, 114102 (2016).   DOI
20 ABAQUS 2017, Dassault Systemes, Velizy-Villacoublay, France (2016).
21 R. Garcia and R. Perez, Surf. Sci. Rep., 47, 197 (2002).   DOI
22 A. N. Cleland, Foundations of Nanomechanics, p. 223, Springer, Berlin (2003)
23 R. D. Cook, Finite Element Modeling for Stress Analysis, p. 241, John Wiley & Sons, New York (1995).