Browse > Article
http://dx.doi.org/10.3807/KJOP.2018.29.6.268

Efficient Humidity Color Sensor Based on a Photonic Crystal with a Metal-Organic Framework  

Kim, Jun Yong (School of Electronics Engineering, Kyungpook National University)
Lee, Sung Hak (School of Electronics Engineering, Kyungpook National University)
Do, Yun Seon (School of Electronics Engineering, Kyungpook National University)
Publication Information
Korean Journal of Optics and Photonics / v.29, no.6, 2018 , pp. 268-274 More about this Journal
Abstract
In this study we suggest a humidity-sensitive color sensor using a one-dimensional photonic crystal and Hong Kong University of Science and Technology-1 (HKUST-1), which is a metal-organic framework (MOF) substance. One-dimensional photonic crystals have a photonic band gap, due to a periodic refractive-index change, and block and reflect light components in a specific wavelength band. The refractive index of HKUST-1 differs in dry and humid environments. Herein we designed a sensor using the presence of the photonic band gap, with FDTD simulation. As a result of optical analysis, the color conversion of the reflected light was superior to the color conversion of the transmitted light. When the center wavelength of the photonic band gap was 550 nm, the maximum peak value of the wet environment increased by a factor of about 9.5 compared to the dry environment, and the color conversion from achromatic to green was excellent as a sensor. The results of this study suggest the application of MOF materials to moisture sensors, and the nanostructure design of MOF materials will expand the applications to industrial devices.
Keywords
Photonic crystal; Metal organic framework; Photonic band gap; Chromatic sensor;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Q. Yan, L. Wang, and X. S. Zhao, "Artificial defect engineering in three-dimensional colloidal photonic crystals," Adv. Funct. Mater. 17, 3695-3706 (2007).   DOI
2 K. Tsakmakidis, "In the limelight," Nat. Mater. 11, 1000-1001 (2012).   DOI
3 S. John, "Why trap light?," Nat. Mater. 11, 997-999 (2012).   DOI
4 Y. Zhao, Z. Xie, H. Gu, C. Zhu, and Z. Gu, "Bio-inspired variable structural color materials," Chem. Soc. Rev. 41, 3297-3317 (2012).   DOI
5 C. Paquet and E. Kumacheva, "Nanostructured polymers for photonics," Mater. Today 11, 48-56 (2008).
6 E. Tian, J. Wang, Y. Zheng, Y. Song, L. Jiang, and D. Zhu, "Colorful humidity sensitive photonic crystal hydrogel," J. Mater. Chem. 18, 1116-1122 (2008).   DOI
7 I. Pavlichenko, A. T. Exner, M. Guehl, P. Lugli, G. Scarpa, and B. V. Lotsch, "Humidity enhanced thermally tunable $TiO_2/SiO_2$ bragg stacks," J. Phys. Chem. C 116, 298-305 (2012).   DOI
8 S. Colodrero, M. Ocana, and H. Miguez, "Nanoparticle-based one-dimensional photonic crystals," Langmuir 24, 4430-4434 (2008).   DOI
9 S. Y. Choi, M. Mamak, G. Von Freymann, N. Chopra, and G. A. Ozin, "Mesoporous bragg stack color tunable sensors," Nano Lett. 6, 2456-2461 (2006).   DOI
10 Y.-J. Lee and P. V. Braun, "Tunable inverse opal hydrogel pH sensors," Adv. Mater. 15, 563-566 (2003).   DOI
11 H. S. Lim, J. H. Lee, J. J. Walish, and E. L. Thomas, "Dynamic swelling of tunable full-color block copolymer photonic gels via counterion exchange," ACS Nano 6, 8933-8939 (2012).   DOI
12 S. Kubo, Z. Z. Gu, K. Takahashi, A. Fujishima, H. Segawa, and O. Sato, "Tunable photonic band gap crystals based on a liquid crystal-infiltrated inverse opal structure," J. Am. Chem. Soc. 126, 8314-8319 (2004).   DOI
13 C. I. Aguirre, E. Reguera, and A. Stein, "Tunable colors in opals and inverse opal photonic crystals," Adv. Funct. Mater. 20, 2565-2578 (2010).   DOI
14 M. M. Hawkeye and M. J. Brett, "Optimized colorimetric photonic-crystal humidity sensor fabricated using glancing angle deposition," Adv. Funct. Mater. 21, 3652-3658 (2011).   DOI
15 S. R. Batten, N. R. Champness, X.-M. Chen, J. Garcia-Martinez, S. Kitagawa, L. Öhrström, M. O'Keeffe, M. P. Suh, and J. Reedijk, "Terminology of metal-organic frameworks and coordination polymers (IUPAC recommendations 2013)," Pure Appl. Chem. 85, 1715-1724 (2013).   DOI
16 L. E. Kreno, K. Leong, O. K. Farha, M. Allendorf, R. P. Van Duyne, and J. T. Hupp, "2-40 metal-organic framework materials as chemical sensors," Chem. Rev. 112, 1105-1125 (2012).   DOI
17 M. Allendorf, "Stress-induced chemical detection using flexible metal - organic frameworks," J. Am. Chem. Soc. 130, 14404-14405 (2008).   DOI
18 Q. M. Wang, D. Shen, M. Bülow, M. L. Lau, S. Deng, F. R. Fitch, N. O. Lemcoff, and J. Semanscin, "Metalloorganic molecular sieve for gas separation and purification," Microporous Mesoporous Mater. 55, 217-230 (2002).   DOI
19 S. S. Y. Chui, S. M. F. Lo, J. P. H. Charmant, A. G. Orpen, and I. D. Williams, "A chemically functionalizable nanoporous material $[Cu_3(TMA)_2(H_2O)_3]_n$," Science 283, 1148-1150 (1999).   DOI
20 E. Biemmi, A. Darga, N. Stock, and T. Bein, "Direct growth of $Cu_3(BTC)_2(H_2O)_3{\cdot}xH2O$ thin films on modified QCMgold electrodes - Water sorption isotherms," Microporous Mesoporous Mater. 114, 380-386 (2008).   DOI
21 I. Senkovska and S. Kaskel, "High pressure methane adsorption in the metal-organic frameworks $Cu_3(btc)_2, Zn_2(bdc)_{2}dabco,\;and\;Cr_3F(H_2O)_{2}O(bdc)_3$," Microporous Mesoporous Mater. 112, 108-115 (2008).   DOI
22 J. N. Winn, Y. Fink, S. Fan, and J. D. Joannopoulos, "Omnidirectional reflection from a one-dimensional photonic crystal," Opt. Lett. 23, 1573 (1998).   DOI
23 J. M. Bendickson, J. P. Dowling, and M. Scalora, "Analytic expressions for the electromagnetic mode density in finite, one-dimensional, photonic band-gap structures," Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 53, 4107-4121 (1996).
24 B. Bowser, L. Brower, M. Ohnsorg, L. Gentry, C. Beaudoin, and M. Anderson, "Comparison of surface-bound and free-standing variations of HKUST-1 MOFs: Effect of activation and ammonia exposure on morphology, crystallinity, and composition," Nanomaterials 8, 650 (2018).   DOI
25 E. Redel, Z. Wang, S. Walheim, J. Liu, H. Gliemann, and C. Woll, "On the dielectric and optical properties of surface-anchored metal-organic frameworks: A study on epitaxially grown thin films," Appl. Phys. Lett. 103 (2013).
26 H. S. Fairman, M. H. Brill, and H. Hemmendinger, "How the CIE 1931 color-matching functions were derived from Wright-Guild data," Color Res. Appl. 22, 11-23 (1997).   DOI
27 M. Daimon and A. Masumura, "High-accuracy measurements of the refractive index and its temperature coefficient of calcium fluoride in a wide wavelength range from 138 to 2326 nm," Appl. Opt. 41, 5275-81 (2002).   DOI
28 G. Wyszecki and W. S. Stiles, Color Science 2nd Edition (John Wiley & Sons, New York, 1982), pp. 257.
29 A. C. Harris and I. L. Weatherall, "Objective evaluation of colour variation in the sandburrowing beetle chaerodes trachyscelides white (Coleoptera: Tenebrionidae) by instrumental determination of CIELAB values," J. R. Soc. New Zeal. 20, 253-259 (1990).   DOI
30 W. S. Stiles and J. M. Burch, "N.P.L. Colour-matching investigation: Final report (1958)," Opt. Acta Int. J. Opt. 6, 1-26 (1959).   DOI