• Title/Summary/Keyword: oil release

Search Result 226, Processing Time 0.03 seconds

Anti-Obesity Effect of Ethyl Acetate Fraction from 50% Ethanol Extract of Fermented Curcuma longa L. in 3T3-L1 Cells (발효울금 주정추출물부터 분리된 에틸아세테이트 분획물에 대한 3T3-L1 세포에서의 지방 형성 억제 효과)

  • Kim, Jihye;Park, Jeongjin;Jun, Woojin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.11
    • /
    • pp.1681-1687
    • /
    • 2014
  • In the present study, we investigated the effect of ethyl acetate fraction from 50% ethanol extract of fermented Curcuma longa L. (FCEE) on lipid metabolism in 3T3-L1 cells. The safety range of FCEE was up to $300{\mu}g/mL$. Effects of FCEE on lipid accumulation and intracellular triglyceride (TG) content in 3T3-L1 cells were examined by Oil Red O staining and AdipoRed assay. Compared to adipocytes, lipid accumulation and intracellular TG content were significantly reduced by 10.2% and 13.7%, respectively, upon FCEE treatment at a concentration of $200{\mu}g/mL$. Glucose uptake by 3T3-L1 cells was significantly reduced by 36.6% compared to adipocytes at a concentration of $200{\mu}g/mL$. On day 8, free glycerol release into the culture medium was significantly reduced compared to adipocytes at concentrations of 50, 100, and $200{\mu}g/mL$ of FCEE. FCEE significantly stimulated RNA expression of AMP-activated protein kinase (AMPK) and suppressed mRNA expressions of sterol regulatory element-binding protein-1c (SREBP-1c), CCAAT/enhancer binding proteins ${\alpha}$ ($C/EBP{\alpha}$), and peroxisome proliferator- activated receptor ${\gamma}$ ($PPAR{\gamma}$) in 3T3-L1 cells. These results suggest that FCEE inhibits adipogenesis through activation of AMPK mRNA expressions and inhibition of SREBP-1c, $C/EBP{\alpha}$, and $PPAR{\gamma}$ mRNA expressions.

Antiobesity Effect of the Bacillus subtilis KC-3 Fermented Soymilk in 3T3-L1 Adipocytes (3T3-L1 지방세포에서 Bacillus subtilis KC-3 발효두유의 항비만 효과)

  • Kim, Ji-Young;Jeong, Jung-Eun;Moon, Suk-Hee;Park, Kun-Young
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.8
    • /
    • pp.1126-1131
    • /
    • 2010
  • The antiobesity effect of soymilks fermented with Bacillus subtilis KC-3 (KCCM 42923) from cheonggukjang was compared with other sources of B. subtilis KCCM 11316 and B. subtilis MYCO. The antiobesity effect was investigated by measuring the release of leptin, Oil red O staining, glycerol secretions and adipogenic transcription factor by reverse transcription-polymerase chain reaction (RT-PCR) in the 3T3-L1 adipocytes. Fermented soymilk with B. subtilis KC-3 (F-KC) led to decrease levels of leptin secretion and increase levels of glycerol secretion in the cells. In addition, F-KC reduced contents of Oil red O dye in the 3T3-L1 adipocytes. Also, mRNA expression levels of both SREBP-1c (sterol regulatory element-binding protein 1-c) and PPAR-$\gamma$ (peroxisome proliferator-activated receptor-$\gamma$), which are adipogenic transcription factor, in cells treated with F-KC were markedly down regulated. These results demonstrate that the Bacillus subtillis fermented soymilk (F-KC) decreased lipid content in 3T3-L1 adipocytes by inhibiting lipogenesis. All B. subtilis fermented soymilks had shown antiobesity activities, however, F-KC exhibited the strongest antiobesity effect in the 3T3-L1 adipocytes. Our study suggests that especially F-KC increased the potential of antiobesity effects.

Anti-obesity Effects of Extracts from Young Akebia quinata D. Leaves (어린 으름잎 추출물(Akebia quinata D. Leaves)의 항비만 효과)

  • Jeon, Yongseop;You, Yanghee;Jun, Woojin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.2
    • /
    • pp.200-206
    • /
    • 2014
  • We investigated the in vitro and in vivo anti-obesity effects of extracts from young Akebia quinata D. leaves, including hot water (AQH) and 80% ethanol (AQE) extracts. The inhibitory effects of AQH and AQE on lipid accumulation in 3T3-L1 cells were examined by Oil Red O staining. Compared to control, lipid accumulation was significantly reduced by 18.3% with the treatment upon AQE at a concentration of $5{\mu}g/mL$. The levels of intracellular triglycerides and free glycerol were also reduced by 52.8% and 9.1% at the same concentration of AQE. The in vivo anti-obesity effect of AQE was evaluated in terms of body and white adipose tissue weights in ICR mice. Experimental groups were divided into the following five groups: normal diet (ND), high fat diet (HFD), high fat diet with 60 mg/kg/day of Orlistat (HFD-RF), high fat diet with 200 mg/kg/day of AQE (HFD-AL), and high fat diet with 600 mg/kg/day of AQE (HFD-AH). Feeding of HFD for eight weeks resulted in significant increases in body weight as well as weight gain compared to the ND group. HFD-AH group showed reduced body weight, weight gain, epididymal white adipose tissue weight, and perirenal white adipose weight as compared to the HFD group. These results indicate that AQE supplementation might have beneficial effects on anti-obesity by inhibiting lipid accumulation.

Adhesion of Human Intervertebral Disk Cells on Aiginate/PLGA Microspheres (Alginate/PLGA 미립구에 대한 인간디스크 세포 부착 효과)

  • Lee, Jun-Hee;Jang, Ji-Wook;So, Jeong-Won;Choi, Jin-Hee;Park, Jong-Hak;Ahn, Shik-Il;Son, Young-Suk;Min, Byoung-Hyun;Khang, Gil-Son
    • Polymer(Korea)
    • /
    • v.33 no.1
    • /
    • pp.7-12
    • /
    • 2009
  • PLGA microspheres have been known as an injectable system for tissue engineering. The purpose of this study was to investigate the condition of emulsion formation and cell adhesion on the microsphere surface. BSA-loaded PLGA microsphere was fabricated by oil-in-water (O/W) and water-in-oil-in-water (W/O/W) solvent evaporation method. Sodium alginate was dissolved in water phase to control initial burst release and to improve lag time by PLGA bulk degradation. In addition, the morphology of cells attached on the micro spheres was studied using a scanning electron microscopy (SEM). Cellular proliferation behavior of human disc cells cultivated on PLGA micro spheres was analyzed using a MTT assay. MTT assay revealed that the cells can attach and proliferate on PLGA microspheres. According to these results, we concluded that BSA -loaded alginate/PLGA microspheres can be used as an injectable system for tissue engineering application.

A Study on the Hydraulic Stability of a Multi-Layered Porous Riverbank Revetment Using Castor Oil-Based Biopolymer (피마자유기반 바이오폴리머를 활용한 다층다공성 호안의 수리적 안정성 검토)

  • Sang-Hoon, Lee;Joongu, Kang;Hong-Kyu, Ahn
    • Ecology and Resilient Infrastructure
    • /
    • v.9 no.4
    • /
    • pp.228-236
    • /
    • 2022
  • Riverbank revetments are installed to increase the stability, while preventing scouring, and utilize the rivers; their construction is prioritized to secure dimensional safety that can withstand flooding. Existing revetment technologies employ use of rocks, gabions, and concrete. However, stone and gabions are easily erosion and destroyed by extensive flooding. Though the materials used in concrete technology possess strength and stability, the strong base adversely affects the aquatic ecosystem as components leach and remain in water for a long time. This serves as an environmental and ecological issue as vegetation does not grow on the concrete surface. This study introduces multi-layer porous riverbank revetment technology using biopolymer materials extracted from castor oil. Results obtained from this study suggest that this technology provides greater dimensional stability as compared to existing technologies. Moreover. it does not release toxic substances into the rivers. Multiple experiments conducted to review the application of this technology to diverse river environments confirm that stability is achieved at a flow velocity of 8.0 m/s and maximum tractive force of 67.25 kgf/m2 (659.05 N/m2).

Life Cycle Assessment on Pump and Treatment Remediation of Contaminated Groundwater (오염 지하수 양수 및 처리 공정에 대한 전과정평가)

  • Cho, Jong-Soo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.6
    • /
    • pp.405-412
    • /
    • 2011
  • Environmental impact by proposed pump and treatment remediation of groundwater contaminated with TCE over 0.6 mg/L down to 0.005 mg/L was assessed for 30 years operation in an industrial park. Total amount of groundwater treated was $2.96{\times}10^7m^3$ and the amount of TCE removed was 17.6 kg at most. The life cycle assessment was used to estimate the environmental cost and environmental benefit and their effects on the environment could be analyzed. Most of the environmental cost was accrued from electricity generation for 30 years pump operation, which includes energy consumption, resources consumption such as coal, crude oil, emission of global warming gas and acid gas into air, waste water production, and waste generation. Environmental impact could be quantified with a Life Cycle Assessment (LCA) model for soil and groundwater remediation and normalized based upon consumption and emission quantities per capita in the world. Among the normalized values, acidification material release was the most significant.

Combustion and Emission Characteristics of Biodiesel Blended Fuel by EGR Rate in a 4-cylinder CRDI Diesel Engine (4실린더 커먼레일 디젤엔진에서 바이오디젤 혼합연료와 EGR율에 따른 연소 및 배기특성)

  • Jeong, Kyu-Soo;Lee, Dong-Gon;Youn, In-Mo;Roh, Hyun-Gu;Park, Sung-Wook;Lee, Chang-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.4
    • /
    • pp.130-136
    • /
    • 2011
  • This study describes the effect of EGR rate on the combustion and emissions characteristics of a four cylinder CRDI diesel engine using biodiesel (soybean oil) blended diesel fuel. The test fuel is composed of 30% biodiesel and 70% ULSD (ultra low sulfur diesel) by volumetric ratio. The experiment of engine emissions and performance characteristics were performed under the various EGR rates. The experimental results showed that ignition delay was extended, the maximum combustion pressure and heat release gradually were decreased with increasing EGR rate. Comparing biodiesel blended fuel to ULSD, the injection quantity of biodiesel blended fuel was further increased than ULSD. The emission results showed that $NO_x$ emission of biodiesel blended fuel becomes higher according to the increase of EGR rate. However, in the case of biodiesel blended fuel, HC, CO and soot emissions were decreased compared to ULSD.

SNP discovery and applications in Brassica napus

  • Hayward, Alice;Mason, Annaliese S.;Dalton-Morgan, Jessica;Zander, Manuel;Edwards, David;Batley, Jacqueline
    • Journal of Plant Biotechnology
    • /
    • v.39 no.1
    • /
    • pp.49-61
    • /
    • 2012
  • This review summarises the biology, discovery and applications of single nucleotide polymorphisms in complex polyploid crop genomes, with a focus on the important oilseed crop $Brassica$ $napus$. $Brassica$ $napus$ is an allotetraploid species, and along with soybean and oil palm is one of the top three most important oilseed crops globally. Current efforts are well underway to $de$ $novo$ assemble the $B.$ $napus$ genome, following the release of the related $B.$ $rapa$ 'A' genome last year. The next generation of genome sequencing, SNP discovery and analysis pipelines, and the associated challenges for this work in $B.$ $napus$, will be addressed. The biological applications of SNP technology for both evolutionary and molecular geneticists as well as plant breeders and industry are far-reaching, and will be invaluable to our understanding and advancement of the $Brassica$ crop species.

Bioproduction of trans-10,cis-12-Conjugated Linoleic Acid by a Highly Soluble and Conveniently Extracted Linoleic Acid Isomerase and an Extracellularly Expressed Lipase from Recombinant Escherichia coli Strains

  • Huang, Mengnan;Lu, Xinyao;Zong, Hong;Zhuge, Bin;Shen, Wei
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.5
    • /
    • pp.739-747
    • /
    • 2018
  • The low solubility and high-cost recovery of Propionibacterium acnes polyunsaturated fatty acid isomerase (PAI) are key problems in the bioproduction of high value-added conjugated linoleic acid (CLA). To improve the solubility of recombinant PAI, six chaperone proteins were coexpressed with PAI. Introduction of GroELS proteins dramatically improved the PAI solubility from 29% to 97%, with increased activity by 57.8%. Combined expression of DnaKJ-GrpE and GroELS proteins increased the activity by 11.9%. In contrast, coexpression of DnaKJ-GrpE proteins significantly reduced the activity by 57.4%. Plasmids pTf16 harboring the tig gene and pG-Tf2 containing the tig and groEL-groES genes had no visible impact on PAI expression. The lytic protein E was then introduced into the recombinant Escherichia coli to develop a cell autolysis system. A 35% activity of total intracellular PAI was released from the cytoplasm by suspending the lysed cells in distilled water. The PAI recovery was further improved to 81% by optimizing the release conditions. The lipase from Rhizopus oryzae was also expressed in E. coli, with an extracellular activity of 110.9 U/ml. By using the free PAI and lipase as catalysts, a joint system was established for producing CLA from sunflower oil. Under the optimized conditions, the maximum titer of t-10,c-12-CLA reached 9.4 g/l. This work provides an effective and low-cost strategy to improve the solubility and recovery of the recombinant intracellular PAI for further large-scale production of CLA.

A Hot Melt w/o/w Emulsion Technique Suitable for Improved Loading of Hydrophilic Drugs into Solid Lipid Nanoparticles (현탁된 고형지질나노입자 내로 친수성 약물의 봉입률을 증대시키기 위한 w/o/w 에멀션 가온용융유화법의 평가)

  • Lee, Byoung-Moo;Choi, Sung-Up;Lee, Jae-Hwi;Choi, Young-Wook
    • Journal of Pharmaceutical Investigation
    • /
    • v.35 no.1
    • /
    • pp.33-38
    • /
    • 2005
  • Recently increasing attention has been focused on solid lipid nanoparticles (SLN) as a parenteral drug carrier due to its numerous advantages that can come from both polymeric particle and fat emulsions, together with the possibility of controlled release and increasing drug stability. Lipophilic drugs such as paclitaxel, cyclosporin A, and all-trans retinoic acid have been successfully entrapped in SLN but the incorporation of hydrophilic drugs in SLN is very limited because of their very low affinity to the lipid. Therefore, as a new approach to improve the loading of hydrophilic drugs, a w/o/w emulsion technique has been developed. The primary objective of the current study was to improve the loading efficiency of a model hydrophilic drug, glycine (Log P = -3.44) into SLN. The proposed preparation process is as follows: A heated aqueous phase consisting of 0.1 ml of glycine solution in water (100 mg/ml), and poloxamer 188 (5 mg) were then added to a molten oil phase containing precirol (100 mg) and lecithin (5 mg). This mixture was dispersed by sonicator, leading to a w/o emulsion. A double emulsion (w/o/w) was formed after the addition of 2% poloxamer solution to the above dispersed system. After cooling the double emulsion, solid lipid nanosuspensions were successfully formed. The lipid nanoparticles had the mean particle size of 441.25 nm, and the average zeta potential of -20.98 mV. The drug loading efficiency was measured to be 8.54% and the drug loading amount was measured to be 0.92%. The w/o/w emulsion method showed an increased loading efficiency compared to conventional o/w emulsion method.