Adhesion of Human Intervertebral Disk Cells on Aiginate/PLGA Microspheres

Alginate/PLGA 미립구에 대한 인간디스크 세포 부착 효과

  • Lee, Jun-Hee (BK21 Polymer BIN Fusion Res. Team, Chonbuk National University) ;
  • Jang, Ji-Wook (BK21 Polymer BIN Fusion Res. Team, Chonbuk National University) ;
  • So, Jeong-Won (BK21 Polymer BIN Fusion Res. Team, Chonbuk National University) ;
  • Choi, Jin-Hee (BK21 Polymer BIN Fusion Res. Team, Chonbuk National University) ;
  • Park, Jong-Hak (BK21 Polymer BIN Fusion Res. Team, Chonbuk National University) ;
  • Ahn, Shik-Il (BK21 Polymer BIN Fusion Res. Team, Chonbuk National University) ;
  • Son, Young-Suk (College of Life Science, Kyung Hee University) ;
  • Min, Byoung-Hyun (Cell Therapy Center, School of Medicine, Ajou University) ;
  • Khang, Gil-Son (BK21 Polymer BIN Fusion Res. Team, Chonbuk National University)
  • 이준희 (전북대학교 BK-21 고분자 BIN융합연구팀) ;
  • 장지욱 (전북대학교 BK-21 고분자 BIN융합연구팀) ;
  • 소정원 (전북대학교 BK-21 고분자 BIN융합연구팀) ;
  • 최진희 (전북대학교 BK-21 고분자 BIN융합연구팀) ;
  • 박종학 (전북대학교 BK-21 고분자 BIN융합연구팀) ;
  • 안식일 (전북대학교 BK-21 고분자 BIN융합연구팀) ;
  • 손영숙 (경희대학교 생명과학대학) ;
  • 민병현 (아주대학교 세포치료센터) ;
  • 강길선 (전북대학교 BK-21 고분자 BIN융합연구팀)
  • Published : 2009.01.25

Abstract

PLGA microspheres have been known as an injectable system for tissue engineering. The purpose of this study was to investigate the condition of emulsion formation and cell adhesion on the microsphere surface. BSA-loaded PLGA microsphere was fabricated by oil-in-water (O/W) and water-in-oil-in-water (W/O/W) solvent evaporation method. Sodium alginate was dissolved in water phase to control initial burst release and to improve lag time by PLGA bulk degradation. In addition, the morphology of cells attached on the micro spheres was studied using a scanning electron microscopy (SEM). Cellular proliferation behavior of human disc cells cultivated on PLGA micro spheres was analyzed using a MTT assay. MTT assay revealed that the cells can attach and proliferate on PLGA microspheres. According to these results, we concluded that BSA -loaded alginate/PLGA microspheres can be used as an injectable system for tissue engineering application.

PLGA미립구는 주사제형과 같은 형태로 조직공학적 응용에 이용할 수 있다. 본 연구에서는 미립구 제조시 에밀젼 형성조건에 대한 영향과 미립구 표면에 세포를 부착시키는 방법에 대하여 연구하였다. BSA를 함유하는 PLGA미립구는 수중유형(O/W)과 수중유중수형(W/O/W) 용매증발법을 이용하여 제조하였다. 미립구의 초기방출효과제어와 PLGA분해의 과정에서 발생되는 지연시간을 개선시키기 위하며 알긴산나트륨을 수상에 용해시켜 사용하였다. 미립구에 부착된 세포의 형태를 전자주사현미경(SEM)을 이용하여 분석하였고 PLGA미립구에 배양된 인간디스크세포의 증식은 MTT분석을 이용하였으며 이를 통하여 PLGA미립구 표면에 세포가 부착되었음을 확인하였다. 본 연구는 BSA가 함유된 알긴산/PLGA미립구를 이용하여 조직공학적 응용이 가능한 주사제형으로서의 가능성을 제안하였다.

Keywords

References

  1. E. Piskin, J. Biomat. Sci. Polym. Ed., 6, 775 (1995) https://doi.org/10.1163/156856295X00175
  2. L. S. Nair and C. T. Laurencin, Pro. Polym. Sci., 32, 762 (2007) https://doi.org/10.1016/j.progpolymsci.2007.05.017
  3. G. Khang, J. H. Jeon, J. C Cho, and H. B. Lee, Polymer (Korea), 23, 471 (1999)
  4. M. K. Choi, G. Khang, I. W. Lee, J. M. Rhee, and H. B. Lee, Polymer(Korea), 25, 318 (2001)
  5. E. K. Jeon, H. J. Whang, G. Khang, I. Lee, J. M. Rhee, and H. B. Lee, Polymer(Korea), 25, 893 (2001)
  6. T. G. Park, H. Y. Lee, and Y. S. Nam, J. Control. Release, 55, 181 (1998) https://doi.org/10.1016/S0168-3659(98)00050-9
  7. S. H. Choi and T. G. Park, Int. J. Pharm., 203, 193 (2000) https://doi.org/10.1016/S0378-5173(00)00457-9
  8. H. J. Chung and T. G. Park, Adv. Drug. Deliver. Rev., 59, 249 (2007) https://doi.org/10.1016/j.addr.2007.03.015
  9. B. Bondar, S. Fuchs, A. Motta, C. Migliaresi, and C. J. Kirkpatrick, Biomaterials, 29, 561 (2008) https://doi.org/10.1016/j.biomaterials.2007.10.002
  10. S. Y. Chew, R. Mi, A. Hoke, and K. W. Leong, Biomaterials, 29, 653 (2008) https://doi.org/10.1016/j.biomaterials.2007.10.025
  11. S. J. Lee, S. H. Oh, J. Liu, S. Soker, A. Atala, and J. J. Yoo, Biomaterials, 29, 1442 (2008)
  12. M. J. Mahoney and W. M. Saltzman, J. Pharm. Sci., 90, 1356 (1996) https://doi.org/10.1002/jps.1088
  13. J. P. Benoit, N. Faisant, M. C. Venier-Juliene, and P. Menei, J. Control. Release, 65, 285 (2000) https://doi.org/10.1016/S0168-3659(99)00250-3
  14. S. M. Willerth and S. E. Sakiyama-Elbert, Adv. Drug. Deliver. Rev., 59, 325 (2007) https://doi.org/10.1016/j.addr.2007.03.014
  15. N. Nihant, C. Schugens, C. Grandfils, R. Jerome, and P. Teyssile, Pharm. Res., 11, 1479 (1994) https://doi.org/10.1023/A:1018912426983
  16. C. Schugens, N. Laruelle, N. Nihant, C. Grandfils, R. Jerome, and P. Teyssie, J. Control. Release, 32, 161 (1994) https://doi.org/10.1016/0168-3659(94)90055-8
  17. F. Gabor, B. Ertl, M. Wirth, and R. Mallinger, J. Microencapsul., 16, 1 (1999) https://doi.org/10.1080/026520499289266
  18. P. Sansdrap and A. J. Moes, Int. J. Pharm., 98, 157 (1993) https://doi.org/10.1016/0378-5173(93)90052-H
  19. P. Couvreur, M. J. Blanco-prieto, F. Puisieux, B. Roques, and E. Fattal, Adv. Drug. Deliver. Rev., 28, 85 (1997) https://doi.org/10.1016/S0169-409X(97)00052-5
  20. R. Jeyanthi, R. C. Metha, B. C. Thanoo, and P. P. Deluca, J. Microencapsul., 14, 163 (1997) https://doi.org/10.3109/02652049709015330
  21. S. Cohen, T. Yoshioka, M. Laucarelli, L. H. Hwang, and R. Langer, Pharm. Res., 8, 713 (1991) https://doi.org/10.1023/A:1015841715384
  22. L. Meinel, O. E. Illi, J. Zapf, M. Malfanti, H. P. Merkle, and B. Gander, J. Control. Release, 70, 193 (2001) https://doi.org/10.1016/S0168-3659(00)00352-7
  23. J. W. So, S. H. Kim, M. O. Baek, Y. Y. Lim, H. W. Roh, N. R. Lee, M. S. Kim, G. H. Ryu, Y, Cho, S. J. Lee, B. H. Min, G. Khang, and H. B. Lee, Tissue Eng. Regen. Med., 4, 577 (2007) https://doi.org/10.1002/term.293
  24. H. Jeffery, S. S. Davis, and D. T. O'Hagan, Pharm. Res., 10, 362 (1993) https://doi.org/10.1023/A:1018980020506
  25. H. Sah, R. Toddywala, and Y. W. Chien, J. Control. Release, 30, 201 (1994) https://doi.org/10.1016/0168-3659(94)90026-4
  26. H. Marchais, F. Boury, C. Damge, J. E. Proust, and J. P. Benoit, S.T.P. Pharma. Sci., 6, 417 (1996)
  27. J. Herrmann and R. Bodmeier, Int. J. Pharm., 126, 129 (1995) https://doi.org/10.1016/0378-5173(95)04106-0
  28. J. S. Park, J. C. Yang, S. H. Yuk, H. S. Shin, J. M. Rhee, M. S. Kim, H. B. Lee, and G. Khang, Polymer(Korea), 31, 189 (2007)
  29. S. L. Lyons and S. G. Wright, US Patent 6,331,317, (2001)
  30. S. K. Kim, S. H. Kim, H. R. Lee, M. H. Cho, M. S. Kim, G. Khang, and H. B. Lee, Tissue Eng. Regen. Med., 2, 388 (2005)
  31. S. M. Kim, S. H. Kim, C. M. Kim, A. Y. Oh, G. A. Kim, I. W. Lee, J. M. Rhee, G. Khang, M. S. Kim, and H. B. Lee, Tissue Eng. Regen. Med., 4, 589 (2007)
  32. S. M. Kim, S. H. Kim, C. M. Kim, A. Y. Oh, I. W. Lee, M. S. Kim, J. M. Rhee, G. Khang, and H. B. Lee, Tissue Eng. Regen. Med., 4, 583 (2007)
  33. Y. K. Ko, S. H. Kim, J. S. Jeong, H. J. Ha, S. J. Yoon, J. M. Rhee, M. S. Kim, H. B. Lee, and G. Khang, Polymer(Korea), 31, 14 (2007)
  34. A. Goraltchouk, V. Scanga, C. M. Morshead, and M. S. Shoichet, J. Control. Release, 110, 400 (2006) https://doi.org/10.1016/j.jconrel.2005.10.019
  35. Y. Y. Yang, T. S. Chung, X. L. Bai, and W. K. Chan, Chem, Eng, Sci., 55, 2223 (2002) https://doi.org/10.1016/S0009-2509(99)00503-5
  36. H. Y. Lee, H. S. Lee, J. S. Kim, S. B. Kim, J. S. Lee, H. I. Choi, and S. G. Chang, International Patent WO 01/78687 A1 (2001)
  37. K. G. Carrasquillo, A. M. Stanley, J. C. Aponte-carro, P. D. Jesus, H. R. Costantino, C. J. Bosques, and K. Grebenow, J. Control. Release, 76, 199 (2001) https://doi.org/10.1016/S0168-3659(01)00430-8
  38. J. I. Lee and H. S. Yoo, Colloids Surf. B Biointerfaces, 61, 81 (2008) https://doi.org/10.1016/j.colsurfb.2007.07.008
  39. M. O'Mahony, Sensory Evaluation of Food: Statistical Methods and Procedures, CRC Press, p. 487 (1986)
  40. H. William, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing, Cambridge University Press, p. 616 (1992)
  41. G. Khang and H. B. Lee, Biomedical Polymers, p.19 (2001)