• Title/Summary/Keyword: oil inlet

Search Result 137, Processing Time 0.023 seconds

A Study on the Operating Control of a 2-Stage Heat Pump System with Screw Compressors (스크류 2단 압축 열펌프 시스템의 운전 제어 방안에 관한 연구)

  • Kim, Ji-Young;Baik, Young-Jin;Lee, Young-Soo;Ra, Ho-Sang
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.501-505
    • /
    • 2006
  • A preliminary performance test of a 30RT 2-stage screw heat pump was carried out in order to develop a high performance large-scale unutilized energy source heat pump, which will be used in district heating and cooling. Two issues on the system control were investigated in this study, A stable 2-stage heating operation is guaranteed only if the load-side water inlet temperature is over a certain value, to where the 1-stage heating operation should be done first from a cold start. An oil shortage problem in low stage compressor, which depends on the degree of suction superheat, was solved by the proper oil level control scheme.

  • PDF

The Study on the Development of Ozone Water Diffusion Device by Ozonated Olive Oil Mix Ratio that will Increase (올리브 오일의 오존화 혼합비율을 높여주는 오존수 확산장치개발에 관한 연구)

  • Kim, Duck-Sool
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.688-693
    • /
    • 2014
  • This study is to increase the utilization of the ozonated water generator to make it easier to take advantage of the ozone water in the world today, there will be to develop a system that operates in one motion. Furthermore, olive oil and ozone is reacted with the wish to apply to the manufacturing technology. In the case of many existing products ozone generator driven mostly non-ozone system. In the case of ozone, but handwriting is implied general way pressure ozone gas leakage risks of suction force to the pump, it is the case of the challenge by using the injector, and limit the generation of ozone and ozone inhalation according to whether the water inlet leakage of existing products risk due to minimized. Despite the disadvantages of the injector system was found the effectiveness of the ozonated water production unit injector system used in this study to maintain the microbiological disinfection performance.

Performance Simulation of Flow Control Oil Pump for Auto Transmission According to Rotating Speed (자동변속기용 유량제어 오일펌프의 회전속도 변화에 따른 성능 해석)

  • Moon, Han-Byul;Cho, Hong-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.5
    • /
    • pp.3044-3050
    • /
    • 2015
  • The purpose of this study is to analyze the performance of the flow control oil pump for automatic transmission. The numerical model for analysis the performance of the flow control oil pump was develop and the characteristics of the internal flow, discharge flow rate, displacement of outer ring, driving torque, generation of cavitation was investigated according to rotating speed. As a result, the cavitation generation increased as the rotating speed increased. The volumetric efficiency was 90% for 2200 rpm and it decreased rapidly, then it decreased about 81% for 5000 rpm. Besides, the cavitation generation was 20%~30% for inlet of suction part, but it reduced below 13% owing to the compression. However, it shows higher cavitation generation for high rotating speed like 5000 rpm.

A Study on Performance Improvement of Industrial Oil Pump Using Computational Analysis (전산해석을 이용한 산업용 오일펌프 성능개선에 관한 연구)

  • Kim, Jin-Woo;Lee, Hyun-Jun;Kong, Seok-Hwan;Lee, Seong-Won;Chung, Won-Ji
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.6_2
    • /
    • pp.1111-1117
    • /
    • 2022
  • Recently, interest in the circular economy has emerged in the industry. As a result, interest in Re-manufacturing, which makes old equipment similar to new products, is growing. In the machine tool industry with many aging equipment, the Re-manufacturing industry is essential, and among them, research on the performance improvement of gear type oil pumps was conducted. The purpose was to achieve the target performance of flow rate and volume efficiency by changing the shape of the gear pump housing clearance and inlet/outlet, and Computational Fluid Analysis and Central Composite Design were conducted using ANSYS CFX 2022 R2 and MINITAB®. The level of each determined factor was determined. 20 design points were derived, and the Flow Rate at each design point was calculated, and the Theoretical Flow Rate was calculated to obtain Volumetric Efficiency. The optimal design point was obtained when the Flow Rate was 140 lpm and the Volumetric Efficiency was maximum, the optimal design point was obtained when both were maximum, and the Surface Plot for each factor was obtained to identify the tendency.

Measurement of Breaker Noise by Using Breaker Noise Measurement System (브레이커 소음측정시스템을 활용한 소음의 측정 및 평가)

  • Lee, Jae-Won;Kang, Dae-Joon;Gu, J.H.;Park, H.K.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1173-1176
    • /
    • 2007
  • The breaker noise is one of the main noise sources of construction site. It is very important to assess and measure the breaker noise accurately, because the noise labelling will be in effect January 2008 in Korea. Therefore, It is necessary to measure the sound power level of breakers and use a appropriate test method in accordance with international standard. In this study, we measure the sound power level of breakers by using the breaker noise measurement system. This system makes it possible to measure the breaker noise more accurately than to measure the noise of that attached with excavator, because this system can control main factors affecting breaker noise such as hydraulic input power, hydraulic supply pressure, breaker inlet oil flow and so on.

  • PDF

Influence of Impeller Outlet Angles in Pump Flow Patterns and Characteristics (임펠러 출구각이 펌프 내부유동 및 특성에 미치는 영향)

  • Lee, Sun-ki
    • The KSFM Journal of Fluid Machinery
    • /
    • v.3 no.1 s.6
    • /
    • pp.28-36
    • /
    • 2000
  • For the improvement of the pump characteristics in the partial capacity range, it must be verified that the influence of the impeller design factor on the internal flows and the influence of the impeller internal flows on the pump characteristics. In this paper, in order to understand the influence of outlet angles on flow conditions and characteristics of a mixed flow pump, experiments were carried out for four kinds of impeller, which have the same inlet angle distributions and meridional section shapes. Results shown that separation and stall in the partial capacity range were enlarged by the outlet angles. The relationship between the separation and the stall at the impeller and the discharge flow conditions were clarified.

  • PDF

An Experimental Study on Thermal Characteristics of Journal Bearing (저어널 베어링의 온도 특성에 관한 실험적 연구)

  • 서태설;김경웅
    • Tribology and Lubricants
    • /
    • v.3 no.2
    • /
    • pp.68-71
    • /
    • 1987
  • This paper deals with some thermal Characteristics of journal bearing such as the behaviour of the maximum bearing temperature, the lubricant's carry-over in the inlet region and so on. Temperatures of the bearing and the lubricants being supplied and discharged were measured along with shaft speed and bearing load. The results showed that with the increase of the Shaft speed, the maximum temperature rose at any shaft speed at a defferent rate of change defending on the flow regime of the lubricant film. And the lower eccentricity ratio is the more lubricant's carry-over occur. Additionally it was partially proved that the oil discharge temperature and the maximum temperature changed in quite different each other.

PIV measurement of the flow field in rectangular tunnel

  • Park, Sang-Kyoo;Yang, Hei-Cheon;Lee, Yong-Ho;Chen, Gong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.886-892
    • /
    • 2008
  • The development of fluid mechanics is briefly reviewed and the importance of fluid flows to heat and mass transfer in nature as well as to science and engineering is outlined. This paper presents the experimental results of air flow in the rectangular tunnel which has four different exhaust outlets, each distance of which from the inlet is 0, 30, 60 and 90mm respectively. This experiment is conducted by using the olive oil as the tracer particles and the kinematic viscosity of the air flow is $1.51{\times}10^{-5}\;m^2$/s. The flow is tested at the flow rate of 1.3 $m^3$/h and the velocity of 0.3 m/s. PIV technology can be used to make a good description of the smoke flow characteristics in the tunnel.

A Study on the Reduction of $NO_x$ Emission from Dual Fuel Engine for Co-generation System (열병합발적용 Dual Fuel Engine의 질소산화물 배출저감에 관한 연구)

  • 정일래;김용술;심용식
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.7 no.1
    • /
    • pp.31-40
    • /
    • 1991
  • This study shows the correlation between $NO_x$ emission in the exhaust gas and various operation factors of dual fuel engine for Co-generation system. General tendency was shown that the thermal efficiency was lowered by the change of operation factors. However these were not confirmed on this experiment. Increasing T4 temperature (exhaust gas temperature at turbo-charger inlet) reduces $NO_x$ emission rate. The higher T4 temperature requires lower excess air as the excess air ratio is controlled by T4 temperature on gas mode operation. Another tendency was that $NO_x$ emission rate is reduced in case of increasing boost air temperature, quantity of pilot oil or bypassing flue gas through the exhaust gas boiler. The diameter of the fuel injection nozzle was changed smaller than design value and the injection timing was readjusted. Thus $NO_x$ emission rate could be reduced as retarding injection timing and changing hole diameter of fuel injection nozzle, however maxium engine out-put was decreased by changing fuel nozzle on the diesel mode operation.

  • PDF

Flow Field Analysis of Smoke in a Rectangular Tunnel

  • Lee, Yong-Ho;Park, Sang-Kyoo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.679-685
    • /
    • 2009
  • In order to simulate a smoke or poisonous gas emergency in a rectangular tunnel and to investigate a better way to exhaust the smoke, the characteristics of smoke flow have been analyzed using flow field data acquired by Particle Image Velocimetry(PIV). Olive oil has been used as tracer particles with the kinematic viscosity of air, $1.51{\times}10^{-5}\;m^2/s$. The investigation has done in the range of Reynolds number of 1600 to 5333 due to the inlet velocities of 0.3 m/s to 1 m/s respectively. The average velocity vector and instantaneous kinematic energy fields with respect to the three different Reynolds numbers are comparatively discussed by the Flow Manager. In general, the smoke flow becomes more disorderly and turbulent with the increase of Reynolds number. Kinematic energy in the measured region increases with the increase of Reynolds number while decreasing at the leeward direction about the outlet region.