• Title/Summary/Keyword: obstacles

Search Result 2,719, Processing Time 0.035 seconds

The Processing Method for a Reverse Nearest Neighbor Queries in a Search Space with the Presence of Obstacles (장애물이 존재하는 검색공간에서 역최대근접질의 처리방법에 관한 연구)

  • Seon, Hwi Joon;Kim, Hong Ki
    • Convergence Security Journal
    • /
    • v.17 no.2
    • /
    • pp.81-88
    • /
    • 2017
  • It is occurred frequently the reverse nearest neighbor queries to find objects where a query point can be the nearest neighbor object in recently applications like the encrypted spatial database. In a search space of the real world, however, there are many physical obstacles(e.g., rivers, lakes, highways, etc.). It is necessary the accurate measurement of distances considered the obstacles to increase the retrieval performance such as this circumstance. In this study, we present the algorithm and the measurement of distance to optimize the processing performance of reverse nearest neighbor queries in a search space with the presence of obstacles.

Obstacle Avoidance in the Chaos Mobile Robot

  • Bae, Young-Chul;Kim, Yi-Gon;Mathis Tinduk;Koo, Young-Duk
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2004.05a
    • /
    • pp.100-105
    • /
    • 2004
  • In this paper, we propose a method to avoid obstacles that have unstable limit cycles in a chaos trajectory surface. We assume all obstacles in the chaos trajectory surface have a Van der Pol equation with an unstable limit cycle. When a chaos robot meets an obstacle in a Lorenz equation or Hamilton equation trajectory, the obstacle reflects the robot. We also show computer simulation results for avoidance obstacle which fixed obstacles and hidden obstacles of Lorenz equation and Hamilton equation chaos trajectories with one or more Van der Pol obstacles

  • PDF

Development of Auxiliary Wheel Unit Mechanism for Overcoming Obstacles

  • Han, Jae-Oh;Youm, Kwang-Wook
    • International journal of advanced smart convergence
    • /
    • v.8 no.2
    • /
    • pp.30-38
    • /
    • 2019
  • Recently, the spread of personal mobility has been rapidly increasing due to the development of environmentally friendly alternative transportation means. In addition, the level of battery technology is also rapidly developing, accelerating the popularization of personal mobility. Such personal mobility has convenience of location transfer, amusement, and high portability compared to other transportation devices. Most personal mobility, however, is made up of small wheels, which cannot overcome obstacles such as rugged roads or obstacles on the road. In this paper, to solve these problems, we tried to devise a device that can easily overcome obstacles by combining wheels with small moving means. The wheel size can be mounted on the front wheel of the small moving means in a protruding manner so that obstacles can be encountered before the front wheels and the safety and ride comfort of the running can be improved.

The Target Searching Method in the Chaotic Mobile Robot Embedding BVP Model (BVP 모델을 내장한 카오스 로봇에서의 목표물 탐색)

  • Bae, Young-Chul;Kim, Yi-Gon;Koo, Young-Duk
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.2
    • /
    • pp.259-264
    • /
    • 2007
  • In this paper, we composed chaos mobile robot by embedding many type of chaos circuit including Arnold Equation and Chua's Equation and proposed method of evaluation of obstacles when it meets or approaches an obstacle while the mobile robot searches an any plane with chaos trajectory and method of concentrating search when it faces target and verified these results. For obstacles avoidance, we developed algorithm that evades an obstacles with chaos trajectory by assuming fixed obstacle, obstacles using VDP model, hidden obstacles using BVP model as obstacles and for searching an object, we developed algorithm of searching with a chaos trajectory by assuming BVP model as an object, verified the results and confirmed reasonability of them.

Obstacle Avoidance of a Mobile Robot Using Low-Cost Ultrasonic Sensors with Wide Beam Angle (지향각이 넓은 저가의 초음파센서를 이용한 이동로봇의 장애물 회피)

  • Choi, Yun-Kyu;Choi, Woo-Soo;Song, Jae-Bok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.11
    • /
    • pp.1102-1107
    • /
    • 2009
  • An ultrasonic sensor has been widely used as a range sensor for its low cost and capability of detecting some obstacles, such as glasses and black surfaces, which are not well detected by a laser scanner and an IR sensor. Although low-cost sensors are preferred for practical service robots, they suffer from the inaccurate and insufficient range information. This paper proposes a novel approach to obstacle avoidance using low-cost anisotropic ultrasonic sensors with wide beam angle. In this paper, obstacles can be detected by the proposed sensor configuration which consists of one transmitter and three receivers. Because even wide obstacles are represented by a point, which corresponds to the intersection of range data from each receiver of the anisotropic sensor, a robot cannot avoid wide obstacles successfully. This paper exploits the probabilistic mapping technique to avoid collision with various types of obstacles. The experimental results show that the proposed method can robustly avoid obstacles in most indoor environments.

Sensor Fusion based Obstacle Avoidance for Terrain-Adaptive Mobile Robot (센서융합을 이용한 부정지형 적응형 이동로봇의 장애물 회피)

  • Yuk, Gyung-Hwan;Yang, Hyun-Seok;Park, Noh-Chul;Lee, Sang-Won
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.2
    • /
    • pp.93-100
    • /
    • 2007
  • The mobile robots to rescue a life in a disaster area and to explore planets demand high mobility as well as recognition of the environment. To avoid unknown obstacles exactly in unknown environment, accurate sensing is required. This paper proposes a sensor fusion to recognize unknown obstacles accurately by using low-cost sensors. Ultrasonic sensors and infrared sensors are used in this paper to avoid obstacles. If only one of these sensors is used alone, it is not useful fer the mobile robots to complete their tasks in the real world since the surrounding environment in the real world is complex and composed of many kinds of materials. So infrared sensor may not recognize transparent or reflective obstacles and ultrasonic sensor may not recognize narrow obstacles, far example, columns of small diameter. Therefore, I selected six ultrasonic sensors and five infrared sensors to detect obstacles. Then, I fused ultrasonic sensors with infrared sensors in order that both advantages and disadvantages of each sensor are utilized together. In fusing sensors, fuzzy algorithm is used to cope with the uncertainties of each sensor. TAMRY which is terrain-adaptive mobile robot is used as the mobile robot for experiments.

Static Analysis and Experimentation on Obstacle-overcoming for a Novel Field Robotic Platform using Flip Motion (Flip 모션을 이용한 신개념 필드 로봇 플랫폼의 큰 장애물 등반 정적 해석 및 실험)

  • Seo, ByungHoon;Shin, Myeongseok;Jeong, Kyungmin;Seo, TaeWon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.10
    • /
    • pp.1067-1072
    • /
    • 2014
  • The ability to overcome obstacles is necessary for field robots for various applications including the ability to climb stairs. While much research has been performed focusing on overcoming obstacles, the resulting robots do not have sufficient ability to overcome obstacles such as stairs. In this research, the purpose is to overcome relatively large obstacles by flipping locomotion through the modification of the stair climbing robotic platform of the previous research. We propose two scenarios to overcome large obstacles: a rear wheel driving system and an elevation system using a ball screw. The research is performed based on static analyses on obstacle-climbing. As the simulation results indicate, we determined the optimal posture of the robot for climbing obstacles for rear wheel driving. Also, an elevation system is analyzed for obstacle climbing. Between the two scenarios an elevation system is determined to reduce the operating torque of the actuator, and the prototype was recently assembled. The climbing ability of the robotic platform is verified. We expect the application area for this robotic platform will be in accident areas of nuclear power plants.

A Study on the Investigation into Obstacles in Construction Budget Estimating (건설기업 실행예산 편성업무의 애로요인 분석에 관한 연구)

  • Koo, Kyo Youn;Kim, Han Soo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.17 no.3
    • /
    • pp.81-89
    • /
    • 2016
  • Under the circumstances where the profitability has become a more critical issue for general contractors, the objective of the study is to identify and discuss obstacles and their key characteristics in the construction budget estimating. Through the questionnaire survey and interviews with experienced estimators of general contractors, the study identified 18 obstacles by 6 groups. It discussed that although various obstacles exist, there are key obstacles to which general contractors should pay attention for the realistic construction budget estimating. In particular, improving subcontractors' estimating competency and incubating estimating experts are identified as the key issues to overcome obstacles in the construction budget estimating.

Trajectory Regeneration Considering Velocity of Dynamic Obstacles Using the Nonlinear Velocity Obstacles (동적 장애물의 속도를 고려한 이동로봇의 궤적 재생성 기법)

  • Moon, Chang-Bae;Chung, Woojin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.11
    • /
    • pp.1193-1199
    • /
    • 2014
  • To achieve safe and high-speed navigation of a mobile service robot, velocity of dynamic obstacles should be considered while planning the trajectory of a mobile robot. Trajectory planning schemes without considering the velocity of the dynamic obstacles may collide due to the relative velocities or dynamic constraints. However, the general planning schemes that considers the dynamic obstacle velocities requires long computational times. This paper proposes a velocity control scheme by scaling the time step of trajectory to deal with dynamic obstacle avoidance problem using the RNLVO (Robot Nonlinear Velocity Obstacles). The RNLVO computes the collision conditions on the basis of the NLVO (Nonlinear Velocity Obstacles). The simulation results show that the proposed scheme can deal with collision state in a short period time. Furthermore, the RNLVO computes the collisions using the trajectory of the robot. As a result, accurate prediction of the moving obstacles trajectory does not required.

Design of a Cross-obstacle Neural Network Controller using Running Error Calibration (주행 오차 보정을 통한 장애물 극복 신경망 제어기 설계)

  • Lim, Shin-Teak;Yoo, Sung-Goo;Kim, Tae-Yeong;Kim, Yeong-Chul;Chong, Kil-To
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.5
    • /
    • pp.463-468
    • /
    • 2010
  • An obstacle avoidance method for a mobile robot is proposed in this paper. Our research was focused on the obstacles that can be found indoors since a robot is usually used within a building. It is necessary that the robot maintain the desired direction after successfully avoiding the obstacles to achieve a good autonomous navigation performance for the specified project mission. Sensors such as laser, ultrasound, and PSD (Position Sensitive Detector) can be used to detect and analyze the obstacles. A PSD sensor was used to detect and measure the height and width of the obstacles on the floor. The PSD sensor was carefully calibrated before measuring the obstacles to achieve better accuracy. Data obtained from the repeated experiments were used to plot an error graph which was fitted to a polynomial curve. The polynomial equation was used to navigate the robot. We also obtained a direction-error model of the robot after avoiding the obstacles. The prototypes for the obstacle and direction-error were modeled using a neural network whose inputs are the obstacle height, robot speed, direction of the wheels, and the error in direction. A mobile robot operated by a notebook computer was setup and the proposed algorithm was used to navigate the robot and avoid the obstacles. The results showed that our algorithm performed very well during the experiments.