DOI QR코드

DOI QR Code

Trajectory Regeneration Considering Velocity of Dynamic Obstacles Using the Nonlinear Velocity Obstacles

동적 장애물의 속도를 고려한 이동로봇의 궤적 재생성 기법

  • Received : 2013.12.09
  • Accepted : 2014.09.01
  • Published : 2014.11.01

Abstract

To achieve safe and high-speed navigation of a mobile service robot, velocity of dynamic obstacles should be considered while planning the trajectory of a mobile robot. Trajectory planning schemes without considering the velocity of the dynamic obstacles may collide due to the relative velocities or dynamic constraints. However, the general planning schemes that considers the dynamic obstacle velocities requires long computational times. This paper proposes a velocity control scheme by scaling the time step of trajectory to deal with dynamic obstacle avoidance problem using the RNLVO (Robot Nonlinear Velocity Obstacles). The RNLVO computes the collision conditions on the basis of the NLVO (Nonlinear Velocity Obstacles). The simulation results show that the proposed scheme can deal with collision state in a short period time. Furthermore, the RNLVO computes the collisions using the trajectory of the robot. As a result, accurate prediction of the moving obstacles trajectory does not required.

서비스 로봇이 충돌안전성을 확보한 상태에서 고속 주행 임무를 수행하기 위해서는 동적 장애물의 속도를 고려한 궤적 계획이 필요하다. 정적 장애물만을 고려한 상태에서 궤적을 계획하는 경우 장애물과의 상대속도로 인해서 로봇이 장애물과 충돌할 수 있다. 본 연구에서는 동적 장애물의 속도를 고려한 궤적시간조정기법을 제안한다. 제안된 기법을 통해서 기존에 생성된 궤적의 시간을 조정해서 장애물 회피가 가능한지를 평가할 수 있다. 만일 회피가 불가능할 경우 생성된 경로가 아닌 다른 경로를 선택할 수 있다. 모의 시험 결과를 통해서 제안된 기법을 통해서 짧은 시간 내에 장애물 회피를 수행할 수 있음을 보였다.

Keywords

References

  1. Minguez, J., Montano, L., Simeony, T. and Alamiy, R., 2001, "Global Nearness Diagram Navigation (GND)," In Proceedings of IEEE International Conference on Robotics & Automation, Seoul, Korea, May 21-26.
  2. Fox, D., Burgard, W. and Thrun, S., 1997, "The Dynamic Window Approach to Collision Avoidance," IEEE Robotics and Automation Magazine, Vol. 4, No. 1, pp. 23-33. https://doi.org/10.1109/100.580977
  3. Borenstein, J. and Koren, Y., 1991, "The Vector Field Histogram - Fast Obstacle-Avoidance for Mobile Robots," IEEE Journal of Robotics and Automation, Vol. 7, No. 3, pp. 278-288. https://doi.org/10.1109/70.88137
  4. Konolige, K., 2000, "A Gradient Method for Realtime Robot Control," In Proceedings of IEEE International Conference on Intelligent Robots and Systems, Takamatsu, Japan, Oct. 30 - Nov. 5.
  5. LaValle, S. M. and Kuffner, J. J., Jr, 2001, "Randomized Kinodynamic Planning," International Journal of Robotics Research, Vol. 20, No. 5, pp. 378-400. https://doi.org/10.1177/02783640122067453
  6. Fraichard, Th. and Asama, H., 2004, "Inevitable Collision States-A Step Towards Safer Robots?" Advanced Robotics, Vol. 18, No. 10, pp. 1001-1024. https://doi.org/10.1163/1568553042674662
  7. Fiorini, P. and Shillert, Z., 1998, "Motion Planning in Dynamic Environments Using Velocity Obstacles," International Journal of Robotics Research, Vol. 17, pp. 760-772. https://doi.org/10.1177/027836499801700706
  8. Shiller1, Z., Large, F., Sekhavat, S. and Laugier, C., 2001, "Motion Planning in Dynamic Environments: Obstacles Moving Along Arbitrary Trajectories," IEEE International Conference on Robotics and Automation (ICRA), pp. 3716-3721, Seoul, Korea, May 21-26.
  9. Martinez-Gomez, L. and Fraichard, T., 2009, "Collision Avoidance in Dynamic Environments: an ICS-Based Solution and Its Comparative Evaluation," IEEE International Conference on Robotics and Automation (ICRA), Kobe, Japan, May 12-17.
  10. van den Berg, J., Lin, M. C., and Manocha, D., 2008, "Reciprocal Velocity Obstacles for Real-Time Multi-Agent Navigation," IEEE International Conference on Robotics and Automation (ICRA), Pasadena, CA, USA, May 19-23.
  11. Zucker, M., Kuffner, J. and Branicky, M., 2007, "Multipartite RRTs for Rapid Replanning in Dynamic Environments," IEEE International Conference on Robotics and Automation (ICRA), Roma, Italy, April 10-14.
  12. Phillips, M. and Likhachev, M., 2011, "SIPP: Safe Interval Path Planning for Dynamic Environments,"" IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China, May 9-13.
  13. Delsart, V. and Fraichard, T., 2008, "Navigating Dynamic Environments Using Trajectory Deformation," IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Nice, France, Sept. 22-26.
  14. Valasek, M., 1987, "Dynamic Time Parameterization of Manipulator Trajectories," Kybernetika, Vol. 23, No. 2, pp. 154-174.
  15. Dhal, O. and Nielsen, L., 1990, "Torque-Limited Path Following by On-Line Trajectory Time Scaling," IEEE Trans. Robotics and Automation Vol. 6, No. 6.
  16. Kiss, B. and Szadeczky-Kardoss, E., 2007, "On-Line Time-Scaling Control of a Kinematic Car with One Input," Proceedings of the 15th Mediterranean Conference on Control & Automation, Athens - Greece, July 27-29,.
  17. Gerelli, O. and Bianco, C. G. L., 2009, "Nonlinear Variable Structure Filter for the Online Trajectory Scaling," IEEE Trans. Ind. Electron., Vol. 56, No. 10, pp.3921-3930. https://doi.org/10.1109/TIE.2009.2018431
  18. Szadeczky-Kardoss, E. and Kiss, B., 2009, "On-Line Trajectory Time-Scaling to Reduce Tracking Error," Intelligent Engineering Systems and Computational Cybernetics, Springer Netherlands, pp. 3-14.
  19. Au, T.-C. and Stone, P., 2010, "Motion Planning Algorithms for Autonomous Intersection Management," AAAI 2010 Workshop on Bridging The Gap Between Task And Motion Planning (BTAMP), July 11-12, Atlanta, Georgia, USA.