• 제목/요약/키워드: nuclear transcription factor-kappa B(NF-${\kappa}B$)

검색결과 193건 처리시간 0.033초

약용식물 추출물의 아토피성 피부염에 대한 항염증 및 항알레르기 효과 (제 2 보) (Anti-inflammatory and Anti-allergic Effects of Herbal Extracts on Atopic Dermatitis ( Part II ))

  • 랑문정
    • 한국응용과학기술학회지
    • /
    • 제30권1호
    • /
    • pp.173-182
    • /
    • 2013
  • 아토피성 피부염은 만성 재발성 염증성 피부질환으로 피부장벽기능의 이상과 환경유발인자에 대한 피부과민성과 연관되어 있다. 이전의 연구에서는 아토피성피부염에 효과적인 약용식물 추출물을 발굴하기 위하여 노회, 자회지정, 석류, 석곡 추출물들의 세포독성, 항산화, 항염, 항알레르기 효과를 검토하였다. 본 연구에서는 지질다당류로 활성화시킨 대식세포 RAW26.7 에 대한 약용식물 추출물들의 항염작용을 보다 상세하게 검토하여 항염작용의 근본적인 분자기전을 확인하고자 하였다. 역전사중합효소연쇄반응분석(reverse transcription polymerase chain reaction analysis) 결과, 석류, 석곡, 노회는 염증성 사이토카인인 IL-6 와 IL-$1{\beta}$ 유전자발현을 현저하게 억제시켰으며 자화지정은 영향이 없었다. 형질주입과 발광효소분석(transfection and luciferase analysis) 결과, 약용식물 모두가 전사 핵인자 카파비(NF-${\kappa}B$)의 활성화를 억제시켰다. 웨스턴 블럿 분석(western blot analysis) 결과, 노회는 JNK MAP 인산화효소의 활성화를 차단하였지만 p38 MAP 인산화효소의 활성화는 차단하지 못하였다. 반면에 자화지정, 석류, 석곡은 JNK MAP 인산화효소뿐만 아니라 p38 MAP 인산화효소의 활성화도 차단하였다. 이들 실험결과들은 노회, 자화지정, 석류, 석곡은 항염효능을 가지고 있으며 따라서 아토피성 피부염의 증상을 경감 또는 완화시키는 잠재력이 있음을 보여 준다.

1-Furan-2-yl-3-pyridin-2-yl-propenone의 TNF-${\apha}$ 유도성 MCP-1과 IL-8의 발현 억제를 통한 장 상피세포 염증 억제효과 (1-Furan-2-yl-3-Pyridine-2-yl-Propenone Inhibits TNF-${\apha}$-induced Intestinal Inflammation via Suppression of MCP-1 and IL-8 Expressions in HT-29 Human Colon Epithelial Cells)

  • 김경진;김종태;이응석;이종숙;김정애
    • 약학회지
    • /
    • 제52권5호
    • /
    • pp.402-406
    • /
    • 2008
  • Previously, we have shown that 1-furan-2-yl-3-pyridin-2-yl-propenone (FPP-3) has an anti-inflammatory activity in a rat paw-edema model. In the present study, we investigated an inhibitory effect of FPP-3 on the tumor necrosis factor (TNF)-${\apha}$-induced inflammatory cytokine response in HT-29 human colon epithelial cells. Treatment with FPP-3 significantly prevented the TNF-${\apha}$-induced attachment of leukocytes to HT-29 colon epithelial cells, which is one of the pathologic hallmarks in colon inflammation. The effect of FPP-3 was markedly superior than that of 5-aminosalicylic acid (5-ASA), a commonly used drug for the treatment of inflammatory bowel disease (IBD). The pretreatment with FPP-3 inhibited TNF-${\apha}$- induced monocyte chemoattractant protein (MCP)-1, interleukin (IL)-8 mRNA expressions. In addition, FPP-3 significantly suppressed TNF-${\apha}$-induced nuclear factor (NF)-${\kappa}B$ transcription activity. These results demonstrate that FPP-3 modulates intestinal inflammation via suppressing the NF-${\kappa}B$ dependent expressions of MCP-1 and IL-8, and suggest that FPP-3 may be a valuable agent for the treatment of IBD.

The Role of Nrf2 in Cellular Innate Immune Response to Inflammatory Injury

  • Kim, Ji-Young;Surh, Young-Joon
    • Toxicological Research
    • /
    • 제25권4호
    • /
    • pp.159-173
    • /
    • 2009
  • Nuclear factor erythroid derived 2-related factor-2 (Nrf2) is a master transcription regulator of antioxidant and cytoprotective proteins that mediate cellular defense against oxidative and inflammatory stresses. Disruption of cellular stress response by Nrf2 deficiency causes enhanced susceptibility to infection and related inflammatory diseases as a consequence of exacerbated immune-mediated hypersensitivity and autoimmunity. The cellular defense capacity potentiated by Nrf2 activation appears to balance the population of $CD4^+$ and $CD8^+$ of lymph node cells for proper innate immune responses. Nrf2 can negatively regulate the activation of pro-inflammatory signaling molecules such as p38 MAPK, NF-${\kappa}B$, and AP-1. Nrf2 subsequently functions to inhibit the production of pro-inflammatory mediators including cytokines, chemokines, cell adhesion molecules, matrix metalloproteinases, COX-2 and iNOS. Although not clearly elucidated, the antioxidative function of genes targeted by Nrf2 may cooperatively regulate the innate immune response and also repress the expression of pro-inflammatory mediators.

사람 신경모세포종 세포주 SH-SY5Y에서 fenretinide에 의한 GD3합성효소(hST8Sia I)의 전사조절기작 (Transcriptional Regulation of Human GD3 Synthase (hST8Sia I) by Fenretinide in Human Neuroblastoma SH-SY-5Y Cells)

  • 강남영;권화영;이영춘
    • 생명과학회지
    • /
    • 제20권9호
    • /
    • pp.1332-1338
    • /
    • 2010
  • 사람 신경모세포종 세포주 SH-SY5Y에서 Fenretinide (FenR)에 의한 GD3합성효소(hST8Sia I)의 발현증가기작을 규명하게 위하여 hST8Sia I의 프로모터 활성을 조사해 본 결과 -1146에서 -646영역에서 FenR에 의한 활성증가를 나타내었다. 또한 부위특이적 변이의 분석은 -731에서 -722영역에 위치한 전사인자 NF-kB 결합부위가 hST8Sia I의 FenR에 의한 활성증가에 중요하게 관여하고 있음을 나타내었다. FenR에 의한 hST8Sia I 유전자의 발현유도에 포함된 신호전달기작을 전사인자 단백질의 항체를 이용하여 조사해 본 결과 FenR처리에 의해 세포질에서는 인산화된 AKT단백질 수준의 증가가 관찰되었고 핵내에서는 NF-kB의 p65단백질의 증가가 관찰되었다. 이러한 결과들은 FenR에 의한 hST8Sia I 유전자의 발현증가는 AKT신호전달경로에 의해 활성화된 NF-kB의 핵내로 이동하여 hST8Sia I 유전자의 프로모터에 결합함으로서 전사가 촉진되어 일어난다는 것을 나타낸다.

Astragaloside IV Prevents Obesity-Associated Hypertension by Improving Pro-Inflammatory Reaction and Leptin Resistance

  • Jiang, Ping;Ma, Dufang;Wang, Xue;Wang, Yongcheng;Bi, Yuxin;Yang, Jinlong;Wang, Xuebing;Li, Xiao
    • Molecules and Cells
    • /
    • 제41권3호
    • /
    • pp.244-255
    • /
    • 2018
  • Low-grade pro-inflammatory state and leptin resistance are important underlying mechanisms that contribute to obesity-associated hypertension. We tested the hypothesis that Astragaloside IV (As IV), known to counteract obesity and hypertension, could prevent obesity-associated hypertension by inhibiting pro-inflammatory reaction and leptin resistance. High-fat diet (HFD) induced obese rats were randomly assigned to three groups: the HFD control group (HF con group), As IV group, and the As IV + ${\alpha}$-bungaratoxin (${\alpha}-BGT$) group (As IV+${\alpha}-BGT$ group). As IV ($20mg{\cdot}Kg^{-1}{\cdot}d^{-1}$) was administrated to rats for 6 weeks via daily oral gavage. Body weight and blood pressure were continuously measured, and NE levels in the plasma and renal cortex was evaluated to reflect the sympathetic activity. The expressions of leptin receptor (LepRb) mRNA, phosphorylated signal transducer and activator of transcription-3 (p-STAT3), phosphorylated phosphatidylinositol 3-kinase (p-PI3K), suppressor of cytokine signaling 3 (SOCS3) mRNA, and protein-tyrosine phosphatase 1B (PTP1B) mRNA, pro-opiomelanocortin (POMC) mRNA and neuropeptide Y (NPY) mRNA were measured by Western blot or qRT-PCR to evaluate the hypothalamic leptin sensitivity. Additionally, we measured the protein or mRNA levels of ${\alpha}7nAChR$, inhibitor of nuclear factor ${\kappa}B$ kinase subunit ${\beta}/nuclear$ factor ${\kappa}B$ ($IKK{\beta}/NF-KB$) and pro-inflammatory cytokines ($IL-1{\beta}$ and $TNF-{\alpha}$) in hypothalamus and adipose tissue to reflect the anti-inflammatory effects of As IV through upregulating expression of ${\alpha}7nAChR$. We found that As IV prevented body weight gain and adipose accumulation, and also improved metabolic disorders in HFD rats. Furthermore, As IV decreased BP and HR, as well as NE levels in blood and renal tissue. In the hypothalamus, As IV alleviated leptin resistance as evidenced by the increased p-STAT3, LepRb mRNA and POMC mRNA, and decreased p-PI3K, SOCS3 mRNA, and PTP1B mRNA. The effects of As IV on leptin sensitivity were related in part to the up-regulated ${\alpha}7nAchR$ and suppressed $IKK{\beta}/NF-KB$ signaling and pro-inflammatory cytokines in the hypothalamus and adipose tissue, since co-administration of ${\alpha}7nAChR$ selective antagonist ${\alpha}-BGT$ could weaken the improved effect of As IV on central leptin resistance. Our study suggested that As IV could efficiently prevent obesityassociated hypertension through inhibiting inflammatory reaction and improving leptin resistance; furthermore, these effects of As IV was partly related to the increased ${\alpha}7nAchR$ expression.

Expression patterns of innate immunity-related genes in response to polyinosinic:polycytidylic acid (poly[I:C]) stimulation in DF-1 chicken fibroblast cells

  • Jang, Hyun-Jun;Song, Ki-Duk
    • Journal of Animal Science and Technology
    • /
    • 제62권3호
    • /
    • pp.385-395
    • /
    • 2020
  • Polyinosinic:polycytidylic acid (poly[I:C]) can stimulate Toll-like receptor 3 (TLR3) signaling pathways. In this study, DF-1 cells were treated with poly(I:C) at various concentrations and time points to examine the comparative expression patterns of innate immune response genes. The viability of DF-1 cells decreased from 77.41% to 38.68% when cells were treated different dose of poly(I:C) from 0.1 ㎍/mL to 100 ㎍/mL for 24 h respectively. The expressions of TLR3, TLR4, TLR7, TLR15, TLR21, IL1B, and IL10 were increased in dose- and time-dependent manners by poly(I:C) treatment. On the contrary, the expression patterns of interferon regulatory factors 7 (IRF7), Jun proto-oncogene, AP-1 transcription factor subunit (JUN), Nuclear Factor Kappa B Subunit 1 (NF-κB1), and IL8L2 were varied; IRF7 and IL8L2 were increasingly expressed whereas the expressions of JUN and NF-κB1 were decreased in a dose-dependent manner after they were early induced. In time-dependent analysis, IRF7 expression was significantly upregulated from 3 h to 24 h, whereas JUN and NF-κB1 expressions settled down from 6 h to 24 h after poly(I:C) treatment although they were induced at early time from 1 h to 3 h. Poly(I:C) treatment rapidly increased the expression of IL8L2 from 3 h to 6 h with a plateau at 6 h and then the expression of IL8L2 was dramatically decreased until 24 h after poly(I:C) treatment although the expression level was still higher than the non-treated control. These results may provide the basis for understanding host response to viral infection and its mimicry system in chickens.

Korean Red Ginseng suppresses bisphenol A-induced expression of cyclooxygenase-2 and cellular migration of A549 human lung cancer cell through inhibition of reactive oxygen species

  • Song, Heewon;Lee, Yong Yook;Park, Joonwoo;Lee, YoungJoo
    • Journal of Ginseng Research
    • /
    • 제45권1호
    • /
    • pp.119-125
    • /
    • 2021
  • Background: Korean Red Ginseng (KRG) is a natural product with antiinflammatory and anticarcinogenic effects. We have previously reported that the endocrine-disrupting compound bisphenol A (BPA)-induced cyclooxygenase-2 (COX-2) via nuclear translocation of nuclear factor-kappa B (NF-κB) and activation of mitogen-activated protein kinase and promoted the migration of A549. Here, in this study, we assessed the protective effect of KRG on the BPA-induced reactive oxygen species (ROS) and expression of COX-2 and matrix metalloproteinase-9 (MMP-9) in A549 cells. Methods: The effects of KRG on the upregulation of ROS production and COX-2 and MMP-9 expression by BPA were evaluated by fluorescence-activated cell sorting (FACs) analysis, quantitative reverse transcription polymerase chain reaction, and western blotting. Antimigration ability by KRG was evaluated by migration assay in A549 cells. Results: KRG significantly suppressed the BPA-induced COX-2, the activity of NF-κB, the production of ROS, and the migration of A549 cells. These effects led to the downregulation of the expression of MMP-9. Conclusions: Overall, our results suggest that KRG exerts an antiinflammatory effect on BPA-treated A549 cells via the suppression of ROS and downregulation of NF-κB activation and COX-2 expression which leads to a decrease in cellular migration and MMP-9 expression. These results provide a new possible therapeutic application of KRG to protect BPA-induced possible inflammatory disorders.

Intestinal anti-inflammatory activity of Sasa quelpaertensis leaf extract by suppressing lipopolysaccharide-stimulated inflammatory mediators in intestinal epithelial Caco-2 cells co-cultured with RAW 264.7 macrophage cells

  • Kim, Kyung-Mi;Kim, Yoo-Sun;Lim, Ji Ye;Min, Soo Jin;Ko, Hee-Chul;Kim, Se-Jae;Kim, Yuri
    • Nutrition Research and Practice
    • /
    • 제9권1호
    • /
    • pp.3-10
    • /
    • 2015
  • BACKGROUND/OBJECTIVES: Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, involves chronic inflammation of the gastrointestinal tract. Previously, Sasa quelpaertensis leaves have been shown to mediate anti-inflammation and anti-cancer effects, although it remains unclear whether Sasa leaves are able to attenuate inflammation-related intestinal diseases. Therefore, the aim of this study was to investigate the anti-inflammatory effects of Sasa quelpaertensis leaf extract (SQE) using an in vitro co-culture model of the intestinal epithelial environment. MATERIALS/METHODS: An in vitro co-culture system was established that consisted of intestinal epithelial Caco-2 cells and RAW 264.7 macrophages. Treatment with lipopolysaccharide (LPS) was used to induce inflammation. RESULTS: Treatment with SQE significantly suppressed the secretion of LPS-induced nitric oxide (NO), prostaglandin $E_2$ ($PGE_2$), IL-6, and IL-$1{\beta}$ in co-cultured RAW 264.7 macrophages. In addition, expressions of inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2, and tumor necrosis factor (TNF)-${\alpha}$ were down-regulated in response to inhibition of $I{\kappa}B{\alpha}$ phosphorylation by SQE. Compared with two bioactive compounds that have previously been identified in SQE, tricin and P-coumaric acid, SQE exhibited the most effective anti-inflammatory properties. CONCLUSIONS: SQE exhibited intestinal anti-inflammatory activity by inhibiting various inflammatory mediators mediated through nuclear transcription factor kappa-B (NF-kB) activation. Thus, SQE has the potential to ameliorate inflammation-related diseases, including IBD, by limiting excessive production of pro-inflammatory mediators.

Combination of Grapefruit and Rosemary Extracts Has Skin Protective Effect through MMPs, MAPKs, and the NF-κB Signaling Pathway In Vitro and In Vivo UVB-exposed Model

  • Yoon, Yeo-Cho;Choi, Hee-Jeong;Park, Ji-Hyun;Diniyah, Nurud;Shin, Hyun-A;Kim, Mi-Yeon
    • 한국자원식물학회지
    • /
    • 제32권6호
    • /
    • pp.633-643
    • /
    • 2019
  • Long-term ultraviolet (UV) exposure accelerates the phenomenon of skin photo-aging by activating collagenase and elastase. In this study, we aimed to investigate the effects of a combination of grapefruit and rosemary extracts (cG&Re) on UVB-irradiated damage in HaCaT cells and dorsal mouse skin. In HaCaT cells, cG&Re recovered UVB-reduced cell viability and inhibited protein expression of mitogen-activated protein kinases (MAPKs), such as extracellular signal-regulated kinases (p-Erk), c-Jun N-terminal kinases (p-JNK), and a class of MAPKs (p-P38). Also, cG&Re suppressed UVB-induced collagen and elastin degradation by decreasing matrix metalloproteinases (MMPs) and nuclear factor kappa light chain enhancer of activated B cells (NF-κB) expression, which is a transcription factor. Similar results were observed in dorsal mouse skin. Taken together, our data indicate that cG&Re prevent UVB-induced skin photo-aging due to collagen/elastin degradation via activation of MAPKs, MMPs, and the NF-κB signaling pathway in vitro and in vivo.

지질다당류로 유발한 염증성 뇌손상 동물모델에 대한 황금작약탕의 억제효과 연구 (Anti-neuroinflammatory Effects of Hwanggeumjakyak-tang on Lipopolysaccharide-induced Brain Injury Model in vivo and in vitro)

  • 김종규;임지성;안성후;송용선
    • 한방재활의학과학회지
    • /
    • 제31권4호
    • /
    • pp.1-11
    • /
    • 2021
  • Objectives Hwanggeumjakyak-tang (HJT) has traditionally been used to treat gastrointestinal inflammatory diseases; however, its protective effects against neuronal inflammation are still undiscovered. Methods We investigated the anti-neuroinflammatory effects of HJT water extract on lipopolysaccharide (LPS)-stimulated BV2 mouse microglia cells. BV2 cells were treated with LPS (1 ㎍/mL) 1 hour prior to the addition of HJT. We measured cell viability using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay and nitrite production using the Griess assay. We performed a reverse transcription-polymerase chain reaction assay to measure messenger RNA expression of inflammatory cytokines including interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α. Western blot analysis was performed to determine protein expression of mitogen-activated protein kinases (MAPKs) and inhibitor of nuclear factor kappa B (NF-κB)α. Results HJT inhibited excessive nitrite release in LPS-stimulated BV2 cells and also significantly inhibited inflammatory cytokines such as IL-1β, IL-6, and TNF-α in LPS-stimulated BV2 cells. Moreover, HJT significantly suppressed LPS-induced MAPK and NF-κB activation and inhibited the elevation of IL-1β, IL-6, and TNF-α in the brain of LPS-injected mice. Conclusions Our study highlights the anti-neuroinflammatory effects of HJT via MAPK and NF-κB deactivation.