• Title/Summary/Keyword: nonlocal sources

Search Result 9, Processing Time 0.017 seconds

A PARABOLIC SYSTEM WITH NONLOCAL BOUNDARY CONDITIONS AND NONLOCAL SOURCES

  • Gao, Wenjie;Han, Yuzhu
    • Communications of the Korean Mathematical Society
    • /
    • v.27 no.3
    • /
    • pp.629-644
    • /
    • 2012
  • In this work, the authors study the blow-up properties of solutions to a parabolic system with nonlocal boundary conditions and nonlocal sources. Conditions for the existence of global or blow-up solutions are given. Global blow-up property and precise blow-up rate estimates are also obtained.

BLOW UP OF SOLUTIONS TO A SEMILINEAR PARABOLIC SYSTEM WITH NONLOCAL SOURCE AND NONLOCAL BOUNDARY

  • Peng, Congming;Yang, Zuodong
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.5_6
    • /
    • pp.1435-1446
    • /
    • 2009
  • In this paper we investigate the blow up properties of the positive solutions to a semi linear parabolic system with coupled nonlocal sources $u_t={\Delta}u+k_1{\int}_{\Omega}u^{\alpha}(y,t)v^p(y,t)dy,\;v_t={\Delta}_v+k_2{\int}_{\Omega}u^q(y,t)v^{\beta}(y,t)dy$ with non local Dirichlet boundary conditions. We establish the conditions for global and non-global solutions respectively and obtain its blow up set.

  • PDF

Thermomechanical interactions in a non local thermoelastic model with two temperature and memory dependent derivatives

  • Lata, Parveen;Singh, Sukhveer
    • Coupled systems mechanics
    • /
    • v.9 no.5
    • /
    • pp.397-410
    • /
    • 2020
  • The present investigation is concerned with two-dimensional deformation in a homogeneous isotropic non local thermoelastic solid with two temperatures due to thermomechanical sources. The theory of memory dependent derivatives has been used for the study. The bounding surface is subjected to concentrated and distributed sources (mechanical and thermal sources). The Laplace and Fourier transforms have been used for obtaining the solution to the problem in the transformed domain. The analytical expressions for displacement components, stress components and conductive temperature are obtained in the transformed domain. For obtaining the results in the physical domain, numerical inversion technique has been applied. Numerical simulated results have been depicted graphically for explaining the effects of nonlocal parameter on the components of displacements, stresses and conductive temperature. Some special cases have also been deduced from the present study. The results obtained in the investigation should be useful for new material designers, researchers and physicists working in the field of nonlocal material sciences.

Time harmonic interactions in non local thermoelastic solid with two temperatures

  • Lata, Parveen;Singh, Sukhveer
    • Structural Engineering and Mechanics
    • /
    • v.74 no.3
    • /
    • pp.341-350
    • /
    • 2020
  • The present investigation is concerned with two dimensional deformation in a non local thermoelastic solid with two temperatures due to time harmonic sources. The nonlocal thermoelastic solid is homogeneous with the effect of two temperature parameters. Fourier transforms are used to solve the problem. The bounding surface is subjected to concentrated and distributed sources. The analytical expressions of displacement, stress components and conductive temperature are obtained in the transformed domain. Numerical inversion technique has been applied to obtain the results in the physical domain. Numerical simulated results are depicted graphically to show the effect of nonlocal parameter and frequency on the components of displacements, stresses and conductive temperature. Some special cases are also deduced from the present investigation.

SOME TYPES OF REACTION-DIFFUSION SYSTEMS WITH NONLOCAL BOUNDARY CONDITIONS

  • Han, Yuzhu;Gao, Wenjie
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.6
    • /
    • pp.1765-1780
    • /
    • 2013
  • This paper deals with some types of semilinear parabolic systems with localized or nonlocal sources and nonlocal boundary conditions. The authors first derive some global existence and blow-up criteria. And then, for blow-up solutions, they study the global blow-up property as well as the precise blow-up rate estimates, which has been seldom studied until now.

GLOBAL EXISTENCE AND BLOW-UP FOR A DEGENERATE REACTION-DIFFUSION SYSTEM WITH NONLINEAR LOCALIZED SOURCES AND NONLOCAL BOUNDARY CONDITIONS

  • LIANG, FEI
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.1
    • /
    • pp.27-43
    • /
    • 2016
  • This paper deals with a degenerate parabolic system with coupled nonlinear localized sources subject to weighted nonlocal Dirichlet boundary conditions. We obtain the conditions for global and blow-up solutions. It is interesting to observe that the weight functions for the nonlocal Dirichlet boundary conditions play substantial roles in determining not only whether the solutions are global or blow-up, but also whether the blowing up occurs for any positive initial data or just for large ones. Moreover, we establish the precise blow-up rate.

Effect of nonlocal parameter on nonlocal thermoelastic solid due to inclined load

  • Lata, Parveen;Singh, Sukhveer
    • Steel and Composite Structures
    • /
    • v.33 no.1
    • /
    • pp.123-131
    • /
    • 2019
  • The present investigation is concerned with two dimensional deformation in a homogeneous nonlocal thermoelastic solid with two temperature. The nonlocal thermoelastic solid is subjected to inclined load. Laplace and Fourier transforms are used to solve the problem. The bounding surface is subjected to concentrated and distributed sources. The analytical expressions of displacement, stress components, temperature change are obtained in the transformed domain. Numerical inversion technique has been applied to obtain the results in the physical domain. Numerical simulated results are depicted graphically to show the effect of angle of inclination and nonlocal parameter on the components of displacements, stresses and conductive temperature. Some special cases are also deduced from the present investigation.

The effect of two temperatures on a FG nanobeam induced by a sinusoidal pulse heating

  • Zenkour, Ashraf M.;Abouelregal, Ahmed E.
    • Structural Engineering and Mechanics
    • /
    • v.51 no.2
    • /
    • pp.199-214
    • /
    • 2014
  • The present investigation is concerned with the effect of two temperatures on functionally graded (FG) nanobeams subjected to sinusoidal pulse heating sources. Material properties of the nanobeam are assumed to be graded in the thickness direction according to a novel exponential distribution law in terms of the volume fractions of the metal and ceramic constituents. The upper surface of the FG nanobeam is fully ceramic whereas the lower surface is fully metal. The generalized two-temperature nonlocal theory of thermoelasticity in the context of Lord and Shulman's (LS) model is used to solve this problem. The governing equations are solved in the Laplace transformation domain. The inversion of the Laplace transformation is computed numerically using a method based on Fourier series expansion technique. Some comparisons have been shown to estimate the effects of the nonlocal parameter, the temperature discrepancy and the pulse width of the sinusoidal pulse. Additional results across the thickness of the nanobeam are presented graphically.

EXTINCTION AND NON-EXTINCTION OF SOLUTIONS TO A FAST DIFFUSIVE p-LAPLACE EQUATION WITH A NONLOCAL SOURCE

  • Han, Yuzhu;Gao, Wenjie;Li, Haixia
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.1
    • /
    • pp.55-66
    • /
    • 2014
  • In this paper, the authors establish the conditions for the extinction of solutions, in finite time, of the fast diffusive p-Laplace equation $u_t=div({\mid}{\nabla}u{\mid}^{p-2}{\nabla}u)+a{\int}_{\Omega}u^q(y,t)dy$, 1 < p < 2, in a bounded domain ${\Omega}{\subset}R^N$ with $N{\geq}1$. More precisely, it is shown that if q > p-1, any solution vanishes in finite time when the initial datum or the coefficient a or the Lebesgue measure of the domain is small, and if 0 < q < p-1, there exists a solution which is positive in ${\Omega}$ for all t > 0. For the critical case q = p-1, whether the solutions vanish in finite time or not depends crucially on the value of $a{\mu}$, where ${\mu}{\int}_{\Omega}{\phi}^{p-1}(x)dx$ and ${\phi}$ is the unique positive solution of the elliptic problem -div(${\mid}{\nabla}{\phi}{\mid}^{p-2}{\nabla}{\phi}$) = 1, $x{\in}{\Omega}$; ${\phi}(x)$=0, $x{\in}{\partial}{\Omega}$. This is a main difference between equations with local and nonlocal sources.