DOI QR코드

DOI QR Code

Effect of nonlocal parameter on nonlocal thermoelastic solid due to inclined load

  • Lata, Parveen (Department of Basicand Applied Sciences, Punjabi University) ;
  • Singh, Sukhveer (Punjabi University APS Neighbourhood Campus)
  • Received : 2019.05.23
  • Accepted : 2019.09.29
  • Published : 2019.10.10

Abstract

The present investigation is concerned with two dimensional deformation in a homogeneous nonlocal thermoelastic solid with two temperature. The nonlocal thermoelastic solid is subjected to inclined load. Laplace and Fourier transforms are used to solve the problem. The bounding surface is subjected to concentrated and distributed sources. The analytical expressions of displacement, stress components, temperature change are obtained in the transformed domain. Numerical inversion technique has been applied to obtain the results in the physical domain. Numerical simulated results are depicted graphically to show the effect of angle of inclination and nonlocal parameter on the components of displacements, stresses and conductive temperature. Some special cases are also deduced from the present investigation.

Keywords

References

  1. Arefi, M. (2018), "Nonlocal free vibration analysis of a doubly curved piezoelectric nano shell", Steel Compos. Struct., Int. J., 27(4), 479-493. https://doi.org/10.12989/scs.2018.27.4.479
  2. Artan, R. (1996), "Nonlocal elastic half plane loaded by a concentrated force", Int. J. Eng. Sci., 34(8), 943-950. https://doi.org/10.1016/0020-7225(95)00132-8
  3. Bachher, M. and Sarkar, N. (2018), "Nonlocal theory of thermoelastic materials with voids and fractional derivative heat transfer", Waves Random Complex Media. https://doi.org/10.1080/17455030.2018.1457230
  4. Bedia, W.A., Benzair, A., Semmah, A., Tounsi, A. and Mahmoud, S.R. (2015), "On the thermal buckling characteristics of armchair single-walled carbon nanotube embedded in an elastic medium based on nonlocal continuum elasticity", Brazil. J. Phys., 45(2), 225-233. https://doi.org/10.1007/s13538-015-0306-2
  5. Belkorissat, I., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2015), "On vibration properties of functionally graded nanoplate using a new non-local refined four variable model", Steel Compos. Struct., Int. J., 18(4), 1063-1081. https://doi.org/10.12989/scs.2015.18.4.1063
  6. Bellifa, H., Benrahou, K.H., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2017), "A nonlocal zeroth-order shear deformation theory for nonlinear postbuckling of nanobeams", Struct. Eng. Mech., Int. J., 62(6), 695-702. https://doi.org/10.12989/sem.2017.62.6.695
  7. Benahmed, A., Fahsi, B., Benzair, A., Zidour, M., Bourada, F. and Tounsi, A. (2019), "Critical buckling of functionally graded nanoscale beam with porosities using nonlocal higher-order shear deformation", Struct. Eng. Mech., Int. J., 69(4), 457-466. https://doi.org/10.12989/sem.2019.69.4.457
  8. Besseghier, A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2017), "Free vibration analysis of embedded nanosize FG plates using a new nonlocal trigonometric shear deformation theory", Smart Struct. Syst., Int. J., 19(6), 601-614. https://doi.org/10.12989/sss.2017.19.6.601
  9. Chen, P.J. and Gurtin, M.E. (1968), "On a theory of heat conduction involving two temperatures", J. Appl. Math. Phys. (ZAMP), 19, 614-627. https://doi.org/10.1007/BF01594969
  10. Chen, P.J., Gurtin, M.E. and Willams, W.O. (1969), "On the thermodynamics of non-simple elastic material with two temperatures", J. Appl. Math. Phys. (ZAMP), 20, 107-112. https://doi.org/10.1007/BF01591120
  11. Dhaliwal, R.S. and Singh, A. (1980), Dynamic Coupled Thermoelasticity, Hindustan Publushing Corporation, Delhi, India.
  12. Edelen, D.G.B. and Laws, N. (1971), "On the thermodynamics of systems with nonlocality", Arch. Rational Mech. Anal., 43, 24-35. https://doi.org/10.1007/BF00251543
  13. Edelen, D.G.B, Green, A.E. and Laws, N. (1971), "Nonlocal continuum mechanics", Arch. Rational Mech. Anal., 43, 36-44. https://doi.org/10.1007/BF00251544
  14. Eringen, A.C. (2002), "Nonlocal Continum Field Theories", Springer, New York, USA.
  15. Eringen, A.C. and Edelen, D.G.B. (1972), "On nonlocal elasticity", Int. J. Eng. Sci., 10, 233-248. https://doi.org/10.1016/0020-7225(72)90039-0
  16. Hassan, M., Marin, M., Ellahi, R. and Almari, S.Z. (2018), "Exploration of convective heat transfer and flow characteristics synthesis by Cu-Ag/water hybrid-nanofluids", Heat Transfer Res., 49(18), 1837-1848. https://doi.org/ 10.1615/HeatTransRes.2018025569
  17. Honig, G. and Hirdes, U. (1984), "A method for the numerical inversion of Laplace transform", J. Computat. Appl. Math., 10, 113-132. https://doi.org/10.1016/0377-0427(84)90075-X
  18. Karami, B., Janghorban, M. and Tounsi, A. (2018), "Nonlocal strain gradient 3D elasticity theory for anisotropic spherical nanoparticles", Steel Compos. Struct., Int. J., 27(2),201-216. https://doi.org/10.12989/scs.2018.27.2.201
  19. Kaur, G., Singh, D. and Tomar, S.K. (2018), "Rayleigh type wave in nonlocal elastic solid with voids", Eur. J. Mech., 71, 134-150. https://doi.org/10.1016/j.euromechsol.2018.03.015
  20. Khetir, H., Bouiadjra, M.B., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2017), "A new nonlocal trigonometric shear deformation theory for thermal buckling analysus of embedded nanosize FG plates", Struct. Eng. Mech., Int. J., 64(4), 391-402. https://doi.org/10.12989/sem.2017.64.4.391
  21. Khurana, A. and Tomar, S.K. (2013), "Reflection of plane longitudinal waves from the stress-free boundary of a nonlocal, microploar solid half-space", J. Mech. Mater. Struct., 8(1), 95-107. http://dx.doi.org/10.2140/jomms.2013.8.95
  22. Khurana, A. and Tomar, S.K. (2017), "Rayleigh type waves in nonlocal microploar solid half-space", Ultrasonics, 73, 162-168. https://doi.org/10.1016/j.ultras.2016.09.005
  23. Kroner, E. (1967), "Elasticity theory of materials with long range cohesive forces", Int. J. Solids Struct., 3, 731-742. https://doi.org/10.1016/0020-7683(67)90049-2
  24. Kumar, R., Sharma, N. and Lata, P. (2016a), "Thermomechanical interactions in the transversely isotropic magnetothermoelastic medium with vacuum and with and without energy dissipation with combined effects of rotation, vacuum and two temperatures", Appl. Math. Model., 40, 6560-6575. https://doi.org/10.1016/j.apm.2016.01.061
  25. Kumar, R., Sharma, N. and Lata, P. (2016b), "Effects of Hall current in a transversely isotropic magnetothermoelastic two temperature medium with rotation and with and without energy dissipation due to normal force", Struct. Eng. Mech., Int. J., 57(1), 91-103. https://doi.org/10.12989/sem.2016.57.1.091
  26. Lata, P. (2018a), "Reflection and refraction of plane waves in layered nonlocal elastic and anisotropic thermoelastic medium", Struct. Eng. Mech., Int. J., 66(1), 113-124. https://doi.org/10.12989/sem.2018.66.1.113
  27. Lata, P. (2018b), "Effect of energy dissipation on plane waves in sandwiched layered thermoelastic medium", Steel Compos. Struct., Int. J., 27(2), 439-451. https://doi.org/10.12989/scs.2018.27.4.439
  28. Marin, M. (1996), "Generalized solutions in elasticity of micropolar bodies with voids", Revista de la Academia Canaria de Ciencias, 8(1), 101-106.
  29. Marin, M. (1997), "Cesaro means in thermoelasticity of dipolar bodies", Acta Mechanica, 122(1-4), 155-168. https://doi.org/10.1007/BF01181996
  30. Marin, M. and Nicaise, S. (2016), "Existence and stability results for thermoelastic dipolar bodies with double porosity", Continuum Mech. Thermodyn., 28(6), 1645-1657. https://doi.org/10.1007/s00161-016-0503-4
  31. Marin, M., Ellahi, R. and Chirila, A. (2017), "On solutions of saint-venant's problem for elastic dipolar bodies with voids", Carpathian J. Math., 33(2), 219-232. www.jstor.org/stable/9001779 https://doi.org/10.37193/CJM.2017.02.09
  32. Mokhtar, Y., Bousahla, A.A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2018), "A novel shear deformation theory for buckling analysis of single layer graphene sheet based on nonlocal elasticity theory", Smart Struct. Syst., Int. J., 21(4), 397-405. https://doi.org/10.12989/sss.2018.21.4.397
  33. Othman, M.I.A. and Marin, M. (2017), "Effect of thermal loading due to laser pulse on thermoelastic porous medium under G-N theory", Results in Physics, 7, 3863-3872. https://doi.org/10.1016/j.rinp.2017.10.012
  34. Paola, M., Failla, G. and Zingales, M. (2010), "The mechanically based approach to 3D non-local linear elasticity theory: Longrange central interactions", Int. J. Solids Struct., 47, 2347-2358. https://doi.org/10.1016/j.ijsolstr.2010.02.022
  35. Polizzotto, C. (2001), "Nonlocal elasticity and related variational principles", Int. J. Solids Struct., 38, 7359-7380. https://doi.org/10.1016/S0020-7683(01)00039-7
  36. Press, W.H., Teukolshy, S.A., Vellerling, W.T. and Flannery, B.P. (1986), Numerical Recipes In Fortran, Cambridge University Press, Cambridge, USA.
  37. Said, S.M. and Othman, M.I.A. (2016), "Wave propagation in a Two-temperature fibre-reinforced magneto-thermoelastic medium with three-phase-lag-model", Struct. Eng. Mech., Int. J., 57(2), 201-220. https://doi.org/10.12989/sem.2016.57.2.201
  38. Salehipour, H., Shahidi, A.R. and Nahvi, H. (2015), "Modified nonlocal elasticity theory for functionally graded materials", Int. J. Eng. Sci., 90, 44-57. https://doi.org/10.1016/j.ijengsci.2015.01.005
  39. Sharma, P. and Ganti, S. (2003), "The size-dependent elastic state of inclusions in non-local elastic solids", Philosoph. Mag. Lett., 83(12), 745-754. https://doi.org/10.1080/09500830310001621641
  40. Sharma, N., Kumar, R. and Lata, P. (2015), "Disturbance due to inclined load in the transversely isotropic thermoelastic medium with two temperatures and without energy dissipation", Mater. Phys. Mech., 22, 107-117. http://www.ipme.ru/ejournals/MPM/no_22215/MPM222_02_kumar.html
  41. Simsek, M. (2011), "Forced vibration of an embedded singlewalled carbon nanotube traversed by a moving load using nonlocal Timoshenko beam theory", Steel Compos. Struct., Int. J., 11(1), 59-76. https://doi.org/10.12989/scs.2011.11.1.059
  42. Singh, D., Kaur, G. and Tomar, S.K. (2017), "Waves in nonlocal elastic solid with voids", J. Elasticity, 128(1), 85-114. https://doi.org/10.1007/s10659-016-9618-x
  43. Soleimani, A., Dastani, K., Hadi, A. and Naei, M.H. (2019), "Effect of out of plane defects on the postbuckling behaviour of graphene sheets based on nonlocal elasticity theory", Steel Compos. Struct., Int. J., 30(6), 517-534. https://doi.org/10.12989/scs.2019.30.6.517
  44. Vasiliev, V.V. and Lurie, S.A. (2016),On correct nonlocal generalized theories of elasticity", Phys. Mesomech., 19(3), 47-59. https://doi.org/10.1134/S102995991603005X
  45. Wang, J. and Dhaliwal, R.S. (1993), "On some theorems in the nonlocal theory of micropolar elasticity", Int. J. Solids Struct., 30(10), 1331-1338. https://doi.org/10.1016/0020-7683(93)90215-S
  46. Youssef, H.M. (2005), "Theory of two-temperature-generalized thermoelasticity", IMAJ. Appl. Math., 71, 383-390. https://doi.org/10.1093/imamat/hxh101
  47. Youssef, H.M. and Al-Lehaibi, E.A. (2007), "State space approach of two-temperature generalized thermoelasticity of onedimensional problem", Int. J. Solids Struct., 44, 1550-1562. https://doi.org/10.1016/j.ijsolstr.2006.06.035

Cited by

  1. Effect of pulsed laser heating on 3-D problem of thermoelastic medium with diffusion under Green-Lindsay theory vol.36, pp.3, 2019, https://doi.org/10.12989/scs.2020.36.3.249
  2. The nano scale buckling properties of isolated protein microtubules based on modified strain gradient theory and a new single variable trigonometric beam theory vol.10, pp.1, 2019, https://doi.org/10.12989/anr.2021.10.1.015
  3. Stoneley wave propagation in nonlocal isotropic magneto-thermoelastic solid with multi-dual-phase lag heat transfer vol.38, pp.2, 2019, https://doi.org/10.12989/scs.2021.38.2.141
  4. Dual-phase-lag model on thermo-microstretch elastic solid Under the effect of initial stress and temperature-dependent vol.38, pp.4, 2021, https://doi.org/10.12989/scs.2021.38.4.355
  5. On the mechanics of nanocomposites reinforced by wavy/defected/aggregated nanotubes vol.38, pp.5, 2019, https://doi.org/10.12989/scs.2021.38.5.533
  6. The effect of multi-phase-lag and Coriolis acceleration on a fiber-reinforced isotropic thermoelastic medium vol.39, pp.2, 2021, https://doi.org/10.12989/scs.2021.39.2.125
  7. Effect of gravity on a magneto-thermoelastic porous medium with the frame of a memory-dependent derivative in the context of the 3PHL model vol.40, pp.6, 2019, https://doi.org/10.12989/scs.2021.40.6.881