• Title/Summary/Keyword: nonlinear transformation

Search Result 341, Processing Time 0.031 seconds

Study on Nonlinear Filter Using Unscented Transformation Update (무향변환을 이용한 비선형 필터에 대한 연구)

  • Yoon, Jangho
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.1
    • /
    • pp.15-20
    • /
    • 2016
  • The optimal estimation of a general continuous-discrete system can be achieved through the solution of the Fokker-Planck equation and the Bayesian update. Due the high nonlinearity of the equation of motion of the system and the measurement model, it is necessary to linearize the both equation. To avoid linearization, the filter based on Fokker-Planck equation is designed. with the unscented transformation update mechanism, in which the associated Fokker-Planck equation was solved efficiently and accurately via discrete quadrature and the measurement update was done through the unscented transformation update mechanism. This filter based on the Direct Quadrature Moment of Method(DQMOM) and the unscented transformation update is applied to the bearing only target tracking problem. The proposed filter can still provide more accurate estimation of the state than those of the extended Kalman filter especially when measurements are sparse. Simulation results indicate that the advantages of the proposed filter based on the DQMOM and the unscented transformation update make it a promising alternative to the extended Kalman filter.

Anomalous Propagation Characteristics of an Airy Beam in Nonlocal Nonlinear Medium

  • Wu, Yun-Long;Ye, Qin;Shao, Li
    • Current Optics and Photonics
    • /
    • v.5 no.2
    • /
    • pp.191-197
    • /
    • 2021
  • The anomalous propagation characteristics of a single Airy beam in nonlocal nonlinear medium are investigated by utilizing the split-step Fourier-transform method. We show that besides the normal straight propagation trajectory, the breathing solitons formed by the interaction between Airy beam and nonlocal nonlinear medium can propagate along the sinusoidal trajectory, and the anomalous trajectory can be modulated arbitrarily by altering the initial amplitude and the nonlocal nonlinear coefficient. In addition, the initial amplitude and the nonlocal nonlinear coefficient can have inverse impacts on the formation and transformation of the equilibrium state of spatial solitons, when the two parameters are larger than certain values. Therefore, the reversible transformation of the evolution dynamics of two soliton states can be realized by adjusting those two parameters properly. Finally, it is shown that the propagation properties of the solitons formed by the interaction between Airy beam and nonlocal nonlinear medium can be controlled arbitrarily, by adjusting the distribution factor and nonlocal coefficient.

Nonlinear Dispersion Model of Sea Waves in the Coastal Zone (연안역에서의 비선형 파낭 분산모형)

  • Pelinovsky, Efim N.;Stepanyants, Yu.;Talipova, Tatiana
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.5 no.4
    • /
    • pp.307-317
    • /
    • 1993
  • The problem of sea wave transformation in the coastal zone taking into account effects of nonlinearity and disperison has been studied. Mathematical model for description of regular wave transformation is based on the method of nonlinear ray theory. The equations for rays and wave field have been produced. Nonlinear wave field is described by the modified Korteweg-de Vries equation. Some analytical solutions of this equation are obtained. Caustic transformation and dissipation effects are included in the mathematical model. Numerical algorithm of solution of the Korteweg-de Vries equation and its stability criterion are described. Results of nonlinear transformation of sea waves in the coastal zone are demonstrated.

  • PDF

Adhesive Area Detection System of Single-Lap Joint Using Vibration-Response-Based Nonlinear Transformation Approach for Deep Learning (딥러닝을 이용하여 진동 응답 기반 비선형 변환 접근법을 적용한 단일 랩 조인트의 접착 면적 탐지 시스템)

  • Min-Je Kim;Dong-Yoon Kim;Gil Ho Yoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.1
    • /
    • pp.57-65
    • /
    • 2023
  • A vibration response-based detection system was used to investigate the adhesive areas of single-lap joints using a nonlinear transformation approach for deep learning. In industry or engineering fields, it is difficult to know the condition of an invisible part within a structure that cannot easily be disassembled and the conditions of adhesive areas of adhesively bonded structures. To address these issues, a detection method was devised that uses nonlinear transformation to determine the adhesive areas of various single-lap-jointed specimens from the vibration response of the reference specimen. In this study, a frequency response function with nonlinear transformation was employed to identify the vibration characteristics, and a virtual spectrogram was used for classification in convolutional neural network based deep learning. Moreover, a vibration experiment, an analytical solution, and a finite-element analysis were performed to verify the developed method with aluminum, carbon fiber composite, and ultra-high-molecular-weight polyethylene specimens.

A Study on the Nonlinear Normal Mode Vibration Using Adelphic Integral (Adelphic Integral을 이용한 비선형 정규모드 진동 해석)

  • Huinam Rhee;Joo, Jae-Man;Pak, Chol-Hui
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.799-804
    • /
    • 2001
  • Nonlinear normal mode (NNM) vibration, in a nonlinear dual mass Hamiltonian system, which has 6th order homogeneous polynomial as a nonlinear term, is studied in this paper. The existence, bifurcation, and the orbital stability of periodic motions are to be studied in the phase space. In order to find the analytic expression of the invariant curves in the Poincare Map, which is a mapping of a phase trajectory onto 2 dimensional surface in 4 dimensional phase space, Whittaker's Adelphic Integral, instead of the direct integration of the equations of motion or the Birkhotf-Gustavson (B-G) canonical transformation, is derived for small value of energy. It is revealed that the integral of motion by Adelphic Integral is essentially consistent with the one obtained from the B-G transformation method. The resulting expression of the invariant curves can be used for analyzing the behavior of NNM vibration in the Poincare Map.

  • PDF

Adaptive State Feedback Control for Nonlinear Rotary Inverted Pendulum System using Similarity Transformation Method: Implementation of Real-Time Experiment (유사변환기법을 이용한 비선형 회전식 역진자의 적응형 상태궤환 제어시스템: 실시간 실험 구현)

  • Cho, Hyun-Cheol;Lee, Young-Jin;Lee, Kwon-Soon;Koo, Kyung-Wan
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.2
    • /
    • pp.130-135
    • /
    • 2009
  • In recent years, researches on rotary inverted pendulum control systems have been significantly focused due their highly nonlinear dynamics and complicated geometric structures. This paper presents a novel control approach for such systems by means of similarity transformation theory. At first, we represent nonlinear system dynamics to the controllability-formed state space model including a time-varying parameter vector. We establish the state-feedback control configuration based on the transformed model and derive an adaptive control law for adjusting desired characteristic equation. Numerical analysis is achieved to evaluate our control method and demonstrate its superiority by comparing it to the traditional control strategy. Furthermore, real-time control experiment is carried out to test its practical reliability.

Optimization for nonlinear systems via block pulse transformation

  • Ahn, Doo-Soo;Park, Jun-Hun;Kim, Jong-Boo;Lee, Seung;Go, Young-Ki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.969-973
    • /
    • 1990
  • This paper presents a method of suboptimal control for nonlinear systems via block pulse transformation. The adaptive optimal control scheme proposed by J.P. Matuszewski is introduced to minimize the performance index. Nonlinear systems are controlled using the obtained optimal control via block pulse transformation. The proposed method is simple and computationally advantageous. Viablity of the this method is established with simulation results for the van der Pol equation for comparision with other methods.

  • PDF

Efficient computational method for joint distributions of heights and periods of nonlinear ocean waves

  • Wang, Yingguang
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.597-605
    • /
    • 2019
  • This paper proposes a novel method for efficient prediction of joint distributions of heights and periods of nonlinear ocean waves. The proposed novel method utilizes a transformed linear simulation which is based on a Hermite transformation model where the transformation is chosen to be a monotonic cubic polynomial, calibrated such that the first four moments of the transformed model match the moments of the true process. This proposed novel method is utilized to predict the joint distributions of wave heights and periods of a sea state with the surface elevation data measured at the Gulfaks C platform in the North Sea, and the novel method's accuracy and efficiency are favorably validated by using comparisons with the results from an empirical joint distribution model, from a linear simulation model and from a second-order nonlinear simulation model.

GMM based Nonlinear Transformation Methods for Voice Conversion

  • Vu, Hoang-Gia;Bae, Jae-Hyun;Oh, Yung-Hwan
    • Proceedings of the KSPS conference
    • /
    • 2005.11a
    • /
    • pp.67-70
    • /
    • 2005
  • Voice conversion (VC) is a technique for modifying the speech signal of a source speaker so that it sounds as if it is spoken by a target speaker. Most previous VC approaches used a linear transformation function based on GMM to convert the source spectral envelope to the target spectral envelope. In this paper, we propose several nonlinear GMM-based transformation functions in an attempt to deal with the over-smoothing effect of linear transformation. In order to obtain high-quality modifications of speech signals our VC system is implemented using the Harmonic plus Noise Model (HNM)analysis/synthesis framework. Experimental results are reported on the English corpus, MOCHA-TlMlT.

  • PDF