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Abstract
This paper presents a method of suboptimal controf
for nonlincar systems via block pulse travsforualion,
The adaptive optimal control scheme proposed by J, P,
Matuszewski is introduced to minimize the performance

index. Nonlinear systems are conirolled using the ob-

tained uptimal control via block pulse transformation.

The proposed method fw simple and computalionalty
advantageous. Viablily of the this melhod is ostabli-
shed with simulation results for the van der Pol equ-

ation for comparision with other methods.

1. Introduction

The orthogonal functions have been widely applied to

control  theory.,  The particular orthogonal funclioas
used up to now are the block pulse function,the Walsh
functions, shilted Legendre polynomials and ete[1-3].
The main fuature of the method of using orthogonal
functions 1s that it reduces the calculus of cortain

differential  equations to a set  linear algebraic
2qualions through the use of the well-known operat.ion
matrix for integralion via orthogonal functions,

In this paper, to obtain the optimal control of the
nonlincar sysltem, we fotroduce the method proposed by
J. P Matuzewski For adaptive oplimal schomeld4].

The approximation method of the block pulse functions
is ewmployed to solve the optimal control problem of
the nonlinear system which is linearized after every
Ltime increment. At sec. Then the nonlinear system is
controlled using the obltained aptimal control via
block pulse transformation. The approach used here is
adaptive in nalure, and viabilily Is established with
the van der Pol quation for

stwulation result for

comparition with other approaches,

2. Block Pulse Transforsations

pr(l), k=1,2,...

in Lhe interval [Lo,tr) by

Block pulse Functions s, defined

LI to [to, At)
0, othorwise
, e [(k- . :
dr(t)= [(1) ¢ Lk-D AL, kAt (2.2)

R otherwise

()= { (2.1)

ti-to
n

where  k=2,3,----- ... m, At=

By applying lhe orthegonal property to an arbitrary
function x(t) which is absolutely integrable in the

interval [Lo,Le), we have
m
x(t) 2 3% Xk Hu(l) (2.9)
k=1

Xk

1]

1.
Ifx(t) Hr(t) dt
Lo

I (kat ‘
® At I(k—l)A(,X(t') dt

i@

v;[x(kAli)w((k—l)At.]] (2.4)

where Xk is the coefficient of ¢k(t), the kth LPF.

The integrals of BPFs[1) can be approximated as

t

J & (1) = P (L) (2.5)
Lo

4 At m

, da(r)de = pk(EI+AL Y b (L) (2.6)
it 2 I=k+1

using m BPFs themselves,
Simitarly, the backward integrals of BPFs{1] can also

be approximaled as

e

$ ()dr x ~PTe (L) (2.7)
Jto
I At k-t

dr()dr = = - hr(L)-AL Y (L) (2.8)
e 2 (=1



where, [ 1 1
0 ]/2 ........... 1 1
P = . IR .
0 0 reeeeeee 172 1
0 0 e 0 1/2

dT)=[ b (L), palt),. .., bult)]

Consider a lincar system described by the state

equat.ion
x(t)=  ACt)x(t) (2.9)
x(to)= xo

Suppase all elements of the vector function x(t) and

the matrix function A(t)} are absolutely integrable in

the time interval [to,tr); then by using the DBPP
approximation we have
I
x(t) = ) Xk p (L) (2.10)
k=1
w
A(L) = 2 Akpi(t) 2.11)
k=1
Ax =[A1x Azx - Ank]
where Aix indicates the kth coluwn element. of BPF for

the ith column elewent of A(L),
BPFs have the following disjoint property:

ity iz

2.12
0 , i=J ¢ )

b it) ()= [

From the disjoint praperty of BPFFs,

AIx(L) = | 2 Aipilt) I rX; <;‘:J'(t)1
=1 =t
= 2 A Xk p () (2.13)
K=t

Now, integration of eq,(2.9) from Lo to {r gives

x () ~x(0) JL AL ) x (1) de 2.
O

Substituting the BPF approximation formula eq.(2.10)
and eq. (2,11},

eq.(2.13), yields

into eq.(2.14), and using eq.(2.6) and

m m “
ZIX B k(t)—xo k(L) ]=&kaJ ¢ x(tydr
k=1 k=1 o

SALNAXK( Y, p e (t)+3ep 1(E))] (2.15)
k=1 l=k+1
Equating the coefficients of ¢ (t),k=1,2,...,m, of

both sides of the above equations gives

X1 = xo=At/2 A1Xy (2.18)
m
Xi-1-X0= A t/2Ak-(Xk-1+ 2, A1Xi

b=k

(2,17)
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Xk - x0= A L/2AXk+), AiXy (2.18)
[=k+t
Finally, we can obtain the recursive algorithm for
solving Xk as
X1 = [I-AL/2A1 )Xo
Xiwr={ [-A /20 ] (1+ At/ 2AK-1)Xk-1 (2.19)
where k=2,3,4,--- ,m

3. Oplimal Control Scheme of Nonlinear Systems

Let us conslder the physical process described by

nonlinear differential equation

x(t)=f(x,u,a,Ll) (3.1)
x(Lo)=xo
As suggested by J, 0. Pearsonl5], it is assumed Chat

nonlinear system can  be represented by a time- and

state—dependent model of the form

;((t,)=A(x.a,li)x(t.)+ll(x,a,t.)u(t.) (3.2)

(3 further assumed that performance index to be

is
minimlzed is of the fourm

;~[;’<x<L)Tux<L)+u<L)TRu(L>)dt (3.3)
4 -

J =

The problew is Lo obtain a optimal feedback control
law of the form

u(t) = 6(x,a,t)x(l) (3.4)

where G is a gain matrix which is, in general, state-

and time-independent., When the matrices A and B are
nol. state-dependent, the optimal control law ls

u(t) = -R7BTA (L) (3.5)

A ) = K(L)x(t) (3.6)

where K(t) salisfies the matrix Riccati equation

K1) +K(LA+ATR (L) -K(L)BR-1K(£)+@=0  (3.7)

To obtain the optimal control, we introduce the
method proposed by J.P.Matuzewski for adaptive optimal
scheme[7],

i) The nonlinear system of eq.(3.1) Is first modeled
as eq.(3.2).

i) The state in A and B matrices are consldered con-
x(ti),

the present time. The parameter a(t) is also given an

stant at their present values with ti being

this time.

[ti te],

assumed form at.

i} In the interval an optimal contral is

determined by the method given in the next section,



And simultaneously the nonlinear system eq.(3.1) is

controlled using the control generated by eq.(3.5).
The nonlinear system is controlled in this manner for
a short time until some
At this new ti the state x(t) and assumed parameter
variation form a(t) are updated, using measured info-
rnation and the control u(t) recalculated using up-

dated forms for the A(t) and B(t) matrices.

4. Optimization of Nonlinear system via BPT

At present time L nonlinear system (3.2) can be
expressed as

X (O=AC )X (E) +BCL u(t) “.n

x(ti)=xo

It is well known that the optimal control variablel[10]

is

u(t) = ~R-IBT(L:)} A (1) (4.2)

A () =-@(V-AT(L) A (£) , A (tf)=0 4.3

where  the adjoint  wvariable A (1) satisfies the

following canonical equation:

INE N .5
A (L) A(t)
where
CACL) -BCLORTIBT(L:):
=g e
Let
q)(“):’@xx(tr.l;)d)xz(t.f,t)] (4.5)

Doy (te, ) P2z(ts,t)
P(te, te) = 1
be the state transition matrix of eq,(4.5).
It is well known that the stale transition matrix has
the following property:
S, 1) = ~D(tr, LIF 1.7

Integrating eq.(4.7) backward from tr Lo ti gives

I - d(tr,t) = J:’f«b(u, z) Fdz (4.8)

From eq.(4.5) and eq.(4.86)
x(tr) - x(1)
= ¢, L 4.9)

IA(L:)I <l>(tf.l)l)‘(u] (

B2 (te, t)x(t)+ P22 (te, YA )=A(ts)-0
and therefore

A () = K(L)yx{t) (4.10)
where K(t)=—da2"1(Lr, ) P2 (Le,t). (4.11)
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new present time t; is reached,

Sustituting eq.(4.10) into eq.(4,2), we can obtain the

optimal feedback conlral law

u(t) = -L(t)x(t) (4.12)
with timevarylng gain L(():

L(t) = -R™IBT(L)K(t) (4.13)
Here by using the BPF approximation, we obtain

P (ts, t)=L brpr(t) (4.14)

k=1
Pij(te, t)=ZDijedr(l) (4.15)
K=t
K(t)=XKke prll) (4.186)

k=1

Inserting eq.(4.15) and cq.(4.16) into eq.(4.8), and
applying oq.(2.8), and then equating the coefficients
of &r(t), we can obtain the recursive algorithm for
solving $w as

du = [ I-ALF/2 17t

b = bt [ [FALF/2 ] [ I-AtF/2 ]!

(4.17)

where ko= m-1,8-2,---,1
From oq.(2.12),(2.13),(4.11),(4.15) and eq.(4.16) it
can be shown that

Kk = dazxtbask (4.18)

Substituting eq.(4.12) and eq.(4.13) into eq.(4.1)
yields

x(t) = [ACCH)-RCERTDT(EDR(L) Ix(t) 4.19)

x(ti) = xo

Now, integrating the above equation from ti to tr,
and introducing the algorithm for solving the state
we can obtain the

equation described in section 2,

recursive algorithm for solving Xk as

X = [ 1-8 1-'xo

Xi = [ T-Ax 1710 I+Ak-1 ]17'Xi-1 (4.20)

where Ak = [ACL)-B(LO)RIBT (L) Kk]

Substituling eq.(4.18) and eq.(4.20) into eq.(4.12)

gives

Uk = ~R™TBT(1.i) KXk (4.21)
where k=1,2,...,m
Since at new presenl time the state x(t) and assumed

parameter variation form a(t) arc updated using measu-

red Information, the nonlinear system is controlled

using the control gencrated by eq.(4.21)  for a shoct

time [t:,ti+At] until some new present time Li is

reached. By using m BPFs in the time Interval (to,te),



the initial state vector is updated at new prosent
time as

x(ti) = 2Xs=x(Li~A L) (4.22)

where the size of the time increment is At=(ti-to)/m.

In the next time interval [ti,tr), the control is ge-

neraled by oq.(4.21) using m-i BPFs,

5. Illuslrative Example

Consider a example of Van der Pol equation(4-91.

This example is used because published results of
other suboptimal techniques use the same example,

This system is

1 (1) 0 1 4 xa (1)
ool 1

T 1 200 e ()

[¢]
(1) [EREKICRCAY

ixx(t,u)]:ll]

5.2
xz(to)! 4 ¢ )

with the following performance index Lo be minimized

gt
2

(T
J Pxd (1) G (1) +udt)dt.

0

Table 1 contains a summary of the values of the per—
formance index by various approaches.

Control u(t) and state x(t) trajeclories are shown in
Fig.1 and

method using te=10, m=50 and At=0.2.

Fig.2. Results are given for the present

Table 1. The Values of the Performance Tndex
Comparcd with OCher Mothod

Method Performance Index
Matuszewskil4] 2.6375
Pearson[5] 2.6188
Garrard[6) 2.6335
Burghart[7] 2,000l
Mahamoud(8) 2, 5941
Permar(9]) 2.5887
Present. method 2.6130
Opt.imal 2

L5635

6. Conclusions

To oblain the optimal control of the nonlincar sys-
tem, we introduce the melhod proposcd by Matuzewski
for adaptive optimal schene.

The nonlinear system is first represented by a 1inea-
rized time- and state-depepdent model.  The state in

system matrices are considered constant  al their

present values, with ti being the prescent. time,

The approximation wethod of Lhe block pulse functions

is employed to solve the optimal control problem of

Lhe nonlinear systom which is linearized alter every
Lime Increment. At sec.  And simultancousty the nonl-
inear :.;y:;l‘em is controlled, using the obtained optimal
control  via block pulse transformalion, for a shart
time unlil some new present time Ui is reached.

method  is

The  proposed simple and computationally

advantageous,
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Fig.1 Contro)l u(t) via the present method
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Flg.2 States x(t) via the present method
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