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Abstract

Voice conversion (VC) is a technique for
modifying the speech signal of a source speaker
so that it sounds as if it is spoken by a target
speaker. Most previous VC approaches used a
linear transformation function based on GMM to
convert the source spectral envelope to the target
spectral envelope. In this paper, we propose
several nonlinear GMM-based transformation
functions in an attempt to deal with the over-
smoothing effect of linear transformation. In order
to obtain high-quality modifications of speech
signals our VC system is implemented using the
Harmonic plus Noise Model (HNM)
analysis/synthesis framework. Experimental results
are reported on the English corpus, MOCHA-TIMIT.

[. Introduction

Voice Conversion is a technique that modifies a
source speaker’'s utterance to be perceived as if it
is produced by another target speaker. There are
numerous applications of voice conversion such as
personalizing textto-speech systems, improving the
intelligibility of abnormal speech of speakers, and
morphing the speech in multimedia applications.
Voice conversion consists in spectral conversion
and prosodic modification in  which spectral

conversion has been studied more extensively and
obtained many achievements in the voice
conversion research community. In this paper, we
also deal with the problem of spectral conversion
only.

Many approaches have been proposed for
spectral conversion including codebook mapping
(1], back-propagation neural networks [6], and
GMM-based linear transformation [2], [4]. Among
them, the GMM-based linear transformation
approaches have been shown to outperform other
approaches [2], [4], [6].

Our paper is organized as follows. In section 2,
we briefly describe the conventional GMM-based
linear transformation methods. Then, in section 3,
we identify the over-smoothing effect of linear
transformation and present several nonlinear
transformation  methods using Radial  Basis
Function (RBF) networks. Qur experiments on an
English database are reported in section 4.

Il. GMM-based Voice Conversion
In this section, we briefly describe the widely used
GMM-based linear transformation methods
proposed in [2] and [4].
Let x = [x; xo = xyJ and y = [y; yo -
wvJ be the time-aligned sequences of spectral
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vectors of the source speaker and the target
speaker respectively in which each spectral vector
is a pdimensional vector. The goal of spectral
conversion is to find a conversion function F{x)
that transforms each source vector x; into its
corresponding target vector .

In GMM-based spectral conversion, a
GMM is assumed to fit to the spectral vectors

p(x)=Y a,N(x;1,,%,) 0
i=1

where a; denotes the prior probability of class /
and MXx, u, 5;) denotes the pdimensional normal
distribution with mean y and covariance matrix 3
defined by

N pu,2) =
1 =) = =)
pl2 1/2 €
(27)""[3| )

The parameters of the model can be estimated by
the expectation-maximization (EM) algorithm [8].

In the least squares estimation (LSE)
method [2], the following form is assumed for the
conversion function

M
F()= Y PC 10l + 15 (k- )] @
i=1
where P(Ci/x) is the probability that x belongs to
the class (. The parameters v; and [; are
estimated from training data by the linear least
squares estimation method. However, in (3) the
terms w and J7 play no special roles in the linear
transformation of x. So (3) can be simplified as

M
F(x)= ZP(C:' | x)[bi + Aix] 4)
i=1
and we also refer to (4) as the LSE method.
An alternative for the LSE method is the
joint density estimation (JDE) method proposed in
[4] with the conversion function

F(x)=E[y|x]=
SRR (TS ) N

LSE and JDE methods are theoretically and
empirically equivalent. Therefore, in this paper we
just use the LSE method as the spectral

conversion algorithm for our baseline system.

Ill. Nonlinear GMM-based Voice

Conversion Algorithms

Although GMM-based linear transformations have
been shown to outperform other methods, our
experiments shows that in some cases it is
inadequate to model the conversion function by a
linear transformation since the correlation between
source and target vectors are small. Therefore, we
attempt to model the conversion function by a
nontinear transformation function using GMM.

In this research, we present two methods
using RBF networks since RBF networks have
been shown to possess the property of best
approximation [9] and it is easy to incorporate
GMM into an RBF network.

The first method is a refinement of the
approach proposed in [6]. As illustrated in Figure
1, an RBF network normally consists of 3 layers
with p inputs, m hidden nodes, and n outputs. A
pdimensional input vector x is applied to all the
basis (response) functions in the hidden layer. The
outputs of the hidden layer (i.e., Aix)) then are
linearly combined to form the output of the
network

yi(x)= Zhi(x)w,ﬂ. +W,,, k=12,.,n

i=1

(6)
or simply in matrix form

y =W xh(x) @)
where Ax) is the (m+7)x1 vector [1 Aix)
A}, Wis a (m+1)xn weight matrix. The weight

matrix W is estimated by the linear least squares
estimation method.

Figure 1: Structure of an RBF network.
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In RBF networks, the choice of basis functions
plays an important role in the success of
approximation problems. The widely used basis
functions include Gaussian functions and spline
functions  whose determined
empirically as in [6]. In this paper, unlike [6], we
use a more principled RBF approach presented in
(8] in which the basis functions are the normal
probability density functions of the GMM of the
source speaker. Specifically, we fix the number of
basis functions as the number of mixtures of a
GMM and then estimate the parameters of the
GMM using the EM algorithm. The basis functions

then have the form
h(x)= exp{—%(x—,u,.)TZ;1 (x—u, )}

Note that (8) differs from (2) in the constant term
1

2 1/2
Qr)""[g since the basis functions need

parameters are

(8)

to be normalized.

The second proposed method is a more
generalized version of (4) in which each linear
transformation Ax + b is replaced by a nonlinear
transformation using the RBF network proposed
above. Hence the piecewise linear transformation
function in LSE is replaced by a piecewise
nonlinear transformation function

F)=2PC10Wa@]

where the term Wi(x) is a nonlinear transformation
as in (7), atx) = [1 Ax) -~ Po(x)]” and hix)'s are
given in (8) (/ =1,--,m).

The parameters of the transformation function
are also estimated by using the linear least
squares estimation method as in the case of (4).

IV. Evaluation Experiments

1. Experimental Corpus and Features

To evaluate our system, we perform male-to-
female and femaleto-male conversions using the
MOCHA-TIMIT corpus [9]. For each speaker we
select 30 sentences as our training set which

contains about 6000 vectors. Our evaluation set
consists of 10 sentences.

We use Bark-scaled, 16™ order line spectral
frequencies (LSFs) as our spectral features due to
its better interpolation properties compared with
other features in voice conversion [4]. The HNM
analysis method [3] is employed to compute the
LSFs feature.

2. Objective Evaluation

To objectively measure the performance of our
system, we used the error measure proposed in
(6]

1 /1 & . .
et 5

=1\ P (10)
where
A, B two time-aligned vector sequences

N number of vectors of each sequence

p: LSFs order

(" LSF vector component i in vector k
Table 1 shows the errors for the 3 methods LSE,
RBF, and piecewise RBF for varicus numbers of
mixtures. The error between the source and the
target spectra is 0.12. Therefore, all the
conversion methods succeed in decreasing the
errors.

Table 1: Errors between converted and target
spectral vectors (x10%). M-F is male-to-female, F-M
is femaleto-male conversion. m is the number of
mixtures.

LSE RBF Piecewise RBF

2

M-F F-M M-F M MF F-M

1 7.82 7.29 10.6 9.8 106 | 9.8

7.73 7.15 10.3 9.71 10.0 | 9.02

7.64 7.05 9.98 9.65 9.05 | 8.1

ol N

7.54 6.97 | 9.73 9.32 8.10 | 7.61

16 7.51 6.97 | 9.64 9.1 783 | 7.26

32 7.54 6.95 9.51 9.0 7.54 6.94

3. Interpretation

Our experiments show that

° The results of the LSE method are
comparable to those reported in literature, e.g.,
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{21, [8]. Our errors are slightly higher because
the experimental database is not highly time-

aligned.
® For small number of mixtures the LSE
method outperforms the nonlinear

transformation functions. This can be explained
that a linear function fits better to the data
than does a simple nonlinear function. As the
number of mixtures increases, both the errors
for linear and nonlinear functions decrease. For
large  number of mixtures (e.g., 32) the
piecewise RBF yields results comparable to or
slightly higher than the LSE method.

L The RBF method always results in the
highest errors. This can be explained that a
simple global nonlinear function (here is a RBF
with a small number of basis functions}) does
not approximate well as a piecewise linear
function. To increase the accuracy of the
approximation we need a larger number of
basis functions which means a large amount of
training data. Instead, we can approximate by a
piecewise nonlinear function with a smaller
number of parameters as in the case of
piecewise RBF method.

V. Conclusion

In this paper, we propose two GMM-based
nonlinear  transformation methods for voice
conversion. Experiments show that the piecewise
RBF method is comparable to the linear
transformation methods and in some cases results
in a slightly higher accuracy. Using an RBF
network only to mode! the transformation function
is shown to be the worst method.
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