• Title/Summary/Keyword: nonlinear predictive control

Search Result 117, Processing Time 0.022 seconds

Temperature control of a batch polymerization reactor using nonlinear predictive control algorithm (비선형 예측제어 알고리즘을 이용한 회분식 중합 반응기의 온도제어)

  • 나상섭;노형준;이현구
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1000-1003
    • /
    • 1996
  • Nonlinear unified predictive control(UPC) algorithm was applied to the temperature control of a batch polymerization reactor for polymethylmethacrylate(PMMA). Before the polymerization reaction is initiated, the parameters of the process model are determined by the recursive least squares(RLS) method. During the reaction, nonlinearities due to generation of heat of reaction and variation of heat transfer coefficients are predicted through the nonlinear model developed. These nonlinearities are added to the process output from the linear process model. And then, the predicted process output is used to calculate the control output sequence. The performance of nonlinear control algorithm was verified by simulation and compared with that of the linear unified predictive control algorithm. In the experiment of a batch PMMA polymerization, nonlinear unified predictive control was implemented to regulate the temperature of the reactor, and the validity of the nonlinear model was verified through the experimental results. The performance of the nonlinear controller turned out to be superior to that of the linear controller for tracking abrupt changes in setpoint.

  • PDF

A Nash Solution to Predictive Control Problem for a Class of Nonlinear Systems

  • Ahn, Choon-Ki;Kwon, Wook-Hyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.76.5-76
    • /
    • 2002
  • In this paper, we provide a Nash solution to predictive control problem for nonminimum phase singular nonlinear systems. Until now, there is no result on predictive control problem for this class of nonlinear systems. Chen's recent work considered predictive control problem for a class of nonlinear systems with ill-defined relative degree. Since his work is not a result considered in the feedback linearization framework, there is no a result on singular probem in his paper. In contrast to the existing predictive control result, our work considers two main obstacles (singularity and nonminimum phase) in the feedback linearization framework. For a generally formu...

  • PDF

Neural model predictive control for nonlinear chemical processes (비선형 화학공정의 신경망 모델예측제어)

  • 송정준;박선원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.490-495
    • /
    • 1992
  • A neural model predictive control strategy combining a neural network for plant identification and a nonlinear programming algorithm for solving nonlinear control problems is proposed. A constrained nonlinear optimization approach using successive quadratic programming cooperates with neural identification network is used to generate the optimum control law for the complicate continuous/batch chemical reactor systems that have inherent nonlinear dynamics. Based on our approach, we developed a neural model predictive controller(NMPC) which shows excellent performances on nonlinear, model-plant mismatch cases of chemical reactor systems.

  • PDF

Advances in Nonlinear Predictive Control: A Survey on Stability and Optimality

  • Kwon, Wook-Hyun;Han, Soo-Hee;Ahn, Choon-Ki
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.1
    • /
    • pp.15-22
    • /
    • 2004
  • Some recent advances in stability and optimality for the nonlinear receding horizon control (NRHC) or the nonlinear model predictive control (NMPC) are assessed. The NRHCs with terminal conditions are surveyed in terms of a terminal state equality constraint, a terminal cost, and a terminal constraint set. Other NRHCs without terminal conditions are surveyed in terms of a control Lyapunov function (CLF) and cost monotonicity. Additional approaches such as output feedback, fuzzy, and neural network are introduced. This paper excludes the results for linear receding horizon controls and concentrates only on the analytical results of NRHCs, not including applications of NRHCs. Stability and optimality are focused on rather than robustness.

Bilinear mode predictive control methods for chemical processes

  • Yeo, Yeong-Koo;Oh, Sea Cheon;Williams, Dennis C.
    • ICROS
    • /
    • v.2 no.1
    • /
    • pp.59-71
    • /
    • 1996
  • In the last decade, the model predictive control methods have enjoyed many industrial applications with successful results. Although the general predictive control methods for nonlinear chemical processes are not yet formulated, the promising features of the model predictive control methods attract attentions of many researchers who are involved with difficult but important nonlinear process control problems. Recently, the class of bilinear model has been introduced as an useful tool for examining many nonlinear phenomena. Since their structural properties are similar to those of linear models, it is not difficult to develop a robust adaptive model predictive control method based on bilinear model. We expect that the model predictive control method based on bilinear model will expand its region in the world of nonlinear systems.

  • PDF

Neural Model Predictive Control for Nonlinear Chemical Processes

  • Song, Jeong-Jun;Park, Sunwon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.899-902
    • /
    • 1993
  • A neural model predictive control strategy combining a neural network for plant identification and a nonlinear programming algorithm for solving nonlinear control problems is proposed. A constrained nonlinear optimization approach using successive quadratic programming combined with neural identification network is used to generate the optimum control law for complex continuous chemical reactor systems that have inherent nonlinear dynamics. The neural model predictive controller (MNPC) shows good performances and robustness. To whom all correspondence should be addressed.

  • PDF

MODEL PREDICTIVE CONTROL OF NONLINEAR PROCESSES BY USE OF 2ND AND 3RD VOLTERRA KERNEL MODEL

  • Kashiwagi, H.;Rong, L.;Harada, H.;Yamaguchi, T.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.451-454
    • /
    • 1998
  • This paper proposes a new method of Model Predictive Control (MPC) of nonlinear process by us-ing the measured Volterra kernels as the nonlinear model. A nonlinear dynamical process is usually de-scribed as Volterra kernel representation, In the authors' method, a pseudo-random M-sequence is ar plied to the nonlinear process, and its output is measured. Taking the crosscorrelation between the input and output, we obtain the Volterra kernels up to 3rd order which represent the nonlinear characteristics of the process. By using the measured Volterra kernels, we can construct the nonlinear model for MPC. In applying Model Predictive Control to a nonlinear process, the most important thing is, in general, what kind of nonlinear model should be used. The authors used the measured Volterra kernels of up to 3rd order as the process model. The authors have carried out computer simulations and compared the simulation results for the linear model, the nonlinear model up to 2nd Volterra kernel, and the nonlinear model up to 3rd order Vol-terra kernel. The results of computer simulation show that the use of Valterra kernels of up to 3rd order is most effective for Model Predictive Control of nonlinear dynamical processes.

  • PDF

Nonlinear model predictive control of chemical reactors

  • Lee, Jongku;Park, Sunwon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.419-424
    • /
    • 1992
  • A robust nonlinear predictive control strategy using a disturbance estimator is presented. The disturbance estimator is comprised of two parts: one is the disturbance model parameter adaptation and the other is future disturbance prediction. RLSM(recurrsive least square method) with a forgetting factor is used to de the uncertain distance model parameters and for the future disturbance prediction, future process outputs and inputs projected by the process model are used. The simulation results for chemical reactors indicate that a substantial improvement in nonlinear predictive control performance is possible using the disturbance estimator.

  • PDF

Radial Basis Function Network Based Predictive Control of Chaotic Nonlinear Systems

  • Choi, Yoon-Ho;Kim, Se-Min
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.5
    • /
    • pp.606-613
    • /
    • 2003
  • As a technical method for controlling chaotic dynamics, this paper presents a predictive control for chaotic systems based on radial basis function networks(RBFNs). To control the chaotic systems, we employ an on-line identification unit and a nonlinear feedback controller, where the RBFN identifier is based on a suitable NARMA real-time modeling method and the controller is predictive control scheme. In our design method, the identifier and controller are most conveniently implemented using a gradient-descent procedure that represents a generalization of the least mean square(LMS) algorithm. Also, we introduce a projection matrix to determine the control input, which decreases the control performance function very rapidly. And the effectiveness and feasibility of the proposed control method is demonstrated with application to the continuous-time and discrete-time chaotic nonlinear system.

Design of an Adaptive Robust Nonlinear Predictive Controller (적응성을 가진 강인한 비선형 예측제어기 설계)

  • Park, Gee--Yong;Yoon, Ji-Sup
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.12
    • /
    • pp.967-972
    • /
    • 2001
  • In this paper, an adaptive robust nonlinear predictive controller is developed for the continuous time nonlinear systems whose control objective is composed of the system output and its desired value. The basic control law is derived from the continuous time prediction model and its feedback dynamcis shows another from if input and output linearization. In order to cope with the parameter uncertainty, robust control is incorporated into the basic control law and the asymptotic convergence of tracking error to a certain bounded region is guaranteed. For stability and performance improvement within the bounded region, an adaptive control is introduced. Simulation tests for the motion control of an underwater wall-ranging robot confirm the performance improvement and the robustness of this controller.

  • PDF