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Abstract

As a technical method for controlling chaotic dynamics, this paper presents a predictive control for chaotic systems
based on radial basis function networks(RBFNs). To control the chaotic systems, we employ an on-line identification
unit and a nonlinear feedback controller, where the RBFN identifier is based on a suitable NARMA real-time modeling
method and the controller is predictive control scheme. In our design method, the identifier and controller are most
conveniently implemented using a gradient-descent procedure that represents a generalization of the least mean
square(LMS) algorithm. Also, we introduce a projection matrix to determine the control input, which decreases the
control performance function very rapidly. And the effectiveness and feasibility of the proposed control method is
demonstrated with application to the continuous-time and discrete-time chaotic nonlinear system.
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1. Introduction

The study of chaotic systems over the past few decades
has led to many interesting and diverse results, and
research works on control and synchronization of chaotic
nonlinear systems have been increasing. A nonlinear
dynamnical system with a chaotic attractor produces motion
on the attractor that has random-like properties. Due to its
unpredictability and irregularity, chaotic phenomena lead
systems to be unstable or performance-degraded situations.
As a result, in many cases, chaos is regarded as an
undesirable phenomenon to be canceled or controlled.

As the effort for controlling chaos, the OGY method [1]
proposed by Ott. et al.,involves stabilizing one of the
unstable periodic orbits embedded in the chaotic attractor
using small time-dependent perturbations of a system
parameter. But this method demands the requirements that
system parameters are accessible or can be perturbed from
the outside. Later, Chen et al. [23] applied some
conventional linear feedback control method to the control
of chaotic systems. This approach, however, can be applied
when we know an exact or at least approximate formula
for the desired orbit, which, in turn, requires somewhat
complex calculations. Recently, intelligent control approaches
using artificial neural networks and fuzzy logics are
adopted for chaos control [4,5].

In this paper, we carry out the predictive control using
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radial basis function networks for the chaotic systems. The
predictive control is a well-established control technique
for linear systems that can be used to control a wide
range of processes [6,7]. However, because the neural
network approximating process is a nonlinear model, an
analytical controller cannot be obtained without constraints
on the controller outputs. Although the RBFN model is
highly nonlinear, the predictive control algorithm can easily
be implemented in an adaptive mode by using an on-line
estimation algorithm such as recursive least mean
square(LMS). Thus, the gradient projection method as a
kind of LMS algorithm is used to optimize the control
performance function iteratively.

As relatively well-known chaotic systems, we consider
continuous-time chaotic systems (Duffing system) and
discrete-time chaotic systems (Hénon system) to verify
the performance of the controller designed by our method.

In Section 2, we describe the architecture of RBF
networks and training algorithm for identifying the chaotic
nonlinear systems. Section 3 contains predictive control
design to obtain the gradient matrix so that the amplitude
of cost function is minimized. In Section 4, we present the
practical verification as applying to the chaotic nonlinear
systems and finally we come to a brief conclusion.

2. Radial Basis Function Networks for
Modeling Chaotic Systems

2.1 Radial basis function networks
2.1.1 Architecture

Fig. 1 shows a schematic diagram of an RBFN with
four receptive field units; the activation level of the 4 #
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receptive field unit (or hidden unit) is
¢ (x)=G(x —2; /o) i=1,2,.-H o))

where x is a multidimensional input vector, z; is a
center vector with the same dimension as X, 0 is the
width as standard deviation, x —z; denctes the Euclidean
distance between x and z;, H is the number of radial basis

functions (or, equivalently, the hidden units), and & (X) is
the #** radial basis function with a single maximum at the
i*" center vector.

There are no connection weights between the input
layer and the hidden layer. Typically o3 (X) is a Gaussian
function

_ —X*Zi2 .
@(x)—exp[————%% ) )

or a logistic function

¢ (x) = 1

1+exp( x —z,%/07)

The output of an RBFN can be computed in the simple
method. As shown in Fig. 1, the final output is the
weighted sum of the output value associated with each
hidden unit:

H H

y(x) =Y wox)=

1= i=

(3

11]1G( X —‘Zi/O'z')=Gw (4)

where W is the connection weight between the '
hidden unit and the output unit.

Gaussian
functions

Output
node

Fig. 1 Structure of RBFN

2.1.2 Recursive hybrid learning procedure

An RBFN's approximation capacity may be further
improved with supervised adjustments of the center and
shape of the radial basis functions. Several learning
algorithms have been proposed to identify the parameters
(z;, 0 and w) of an RBFN. Besides using a supervised
learning scheme alone to update all modifiable parameters,

a vanety of sequential training algorithms for RBFNs have
been reported [8-111.

In RBF learning approach, the radial basis functions are
permitted to move the locations of their centers in a
self-organized fashion for the selection of initial center
positions. And then, the centers of the radial basis
functions, the linear weights of the output layer and all
other free parameters of the network are computed using a
supervised learning process. In other words, the network
undergoes a hybrid learning algorithm. The self-organized
component of the leaming process serves to allocate
network resources in a meaningful way by placing the
centers of the radial basis function in only those regions of
the input space where significant data are present. For the
self-organized selection of the hidden units' centers, we
may use the k-means clustering algorithm [12].

For the supervised learning process, the RBFN takes on
its most generalized form. The mathematical basis for the
learning algorithm is the optimization technique known as
gradient descent.

2.2 ldentification of chaotic systems with RBFNs

NARMA (Nonlinear Auto-Regressive Moving Average)
is the most general model among the models used to
represent a single-input single-output (SISO) nonlinear
system and it can be described by the following nonlinear
difference equation:

y(k+1)=fly(k),y(k—1), -, ylk—p+1);

where sequence [u(k),y(k)] represents the input-
output pair of the system at time instant k, f is an
unknown nonlinear function to be estimated by a neural
network, and p and ¢q are the known structure orders of

the system [13].
A RBFN is a single-hidden layer feedforward network
with linear output transfer functions on the hidden-layer

nodes. In other words, RBFN describes the mapping f mn
Eqn. (6) in terms of a weighted summation of a set of
radial basis functions. And f is the estimate of f [14].

H

F&x) =Y we x)+w

qsr(x) = G( X —z; /(72')}2':1;27 ,'H

where the function ¢ (x) is called a radial basis
function and w; , uy are the weights matrix and bias of the
neural network respectively. For the Gaussian RBF, ¢ (x )
is defined by

o . 2
¢ (x) =exp [—};72—’—] )

And the standard deviation (i.e., width) of all the
Gaussian RBFs is fixed at
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where H is the number of centers and d is the

maximum distance between the chosen
Since the input to the neural network is

x = [y(k),y(k—1), -, y(k—p+1);

w(k),u(k—1), -, u(k—q+1)] ®

the neural network model for the unknown system (5)
can be expressed as

y(k+1) = fly(k),y(k—1), -, y(k—p+1); ©
u(k),u(k—1), -, u(k—q+1)]

where y(k+1) is the output of the neural network.

In the advance of system identification, we firstly
initialize centers by the k-means algorithm to improve
control performance.

The learning strategy for system identification is the
selection of weights and centers using a supervised
learning process. A natural candidate for such a process is
error—correction learning, which is most conveniently
implemented using a gradient- descent procedure that
represents a generalization of the LMS algorithm.

The first step in the development of such a learning
procedure is to define the instantaneous value of the
modeling performance function:

§= %e?(k-l—l) 10
where e;(k+1) is the error signal, defined by
er(k+1) =y(k+1) —y(k+1) (1)

where y(k+ 1) is the actual output signal.

The requirement is to find the free parameters W, z; so
as to minimize 6. The results of this minimization are
summarized in Egns. (12), (13). The following two
equations describe adaptation formulas for the linear
weights and positions of centers for RBFNs.

1) Linear weights (output layer)

o (B — 00
w,(k-i—l)—w,(k) Thaw,(k) s ¢ 1!2} :H
8 k+1)C(x —2z, /o)
3wi(k) ’

(12)
2) Positions of centers (hidden layer)

= . — 66 ) — e

z,(k+1)—zl(k) Tbazi(k) P 1)2; ;H
B 2 K)e(k+1)C(x —2,; fo)(x —2,)
azi(k) 02 74 i %
13
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3. Design of Predictive Controller for Chaotic Systems

In this Section, we implement multi-step predictor with
the estimated output y of RBFN that is a model of chaotic

systems, and then design the predictive controller for
chaotic systems.

3.1 Chaotic systems

In this paper, we consider the Duffing and Hénon
systems, which are two representative continuous-time
and discrete-time chaotic nonlinear systems, respectively.

The solution to the Duffing equations is often used as
an example of a classic chaotic system. The state equation
of the Duffing system is

= y
(y j - (alx — 23 — agy+ beos (wt) + u) (14

where typically, a;=1.1, a;=04, b=21 and
w=1.8.

And, we discuss another two-dimensional map with a
strange attractor. Hénon chose to study mappings rather
than differential equations because maps are faster to
simulate and their solutions can be followed more
accurately and for a longer time.

The state space of the Hénon system with z and y as

state variables is expressed by
Tn+1 — Yn + 1- al’%
Yn+1 bx, +u

where, a =14, 56=0.3.

(15)

3.2 Predictive control algorithm

Since the given systems are uncertain, we assume that
the closed-loop system output data are available on-line
for the controller. We take the approach that employs an
on-line system identification unit and a nonlinear feedback
controller, where the RBFN identifier is based on a
suitable NARMA real-time modeling method and the
controller is a predictive controls cheme. The overall
configuration of the closed-loop control system is shown
in Fig. 2, where the output y(k) is to be controlled to
track the reference, r(k).

Chaotic
System

vk}

é :
EIR
: Neural P
: Network 0
i : Model/
B, :
/{,L """"""
utk) Controller <—hﬁ®<—r(k)

Fig. 2 Block diagram of control system
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Our purpose is to select optimal control signal « in
order to minimize the control performance function:

e=Seb(k+1) 16)

where ec(k+1) is the control error signal, defined by

eck+1) =r(k+1) —y(k+1) an

and r(k+1) is the desired output signal.
Using the neural network structure shown in Fig. 1,
Eqn. (9) can be rewritten to give

H
y(k+1) =Y wG(x -z, /o) +w

1=

(18)

To minimize €, u(k) is recursively calculated via a
simple gradient-descent method.

Je

u{k+1) =u(k) —”au(k)

(19)

where 7> 0 is a learning rate. It can be seen that the
controller relies on the approximation performed by the
neural network. Therefore, it is necessary that ?;(k+1)
the real system output y(k+1)
asymptotically. This can be achieved by keeping the neural
network training on-line.

Substituting Eqn. (17) into Eqn. (16) and then
differentiating the result with respect to u(k), we have

approaches

de¢ aéfk-i—ll
Talk) eclk+1) e (20)

where 8y (k+1)/0u(k) that is known as the gradient
of the neural network model with respect to u(k) can be

analytically evaluated by using the known neural network
structure, Eqn. (18) as follows :

ay(k+1) 2 & 8%
—ﬂ—lau(k) ———lz(wic:(x—zi/or)(x—z,-)—au(k))

21
where ——ax_z[(-—l)——-»«—g——.}’
© aul(k) 0,0, --,0, 1,0, --,07"
and ' denotes "transpose”. Finally, Eqn. (19) becomes

ulk+1) =u(k)
~ L+ )3 6x =, fo)x —3.)

So far, we described the algorithm for one-step ahead
predictive control scheme. Then let the algorithm described
above be extended to a multi-step ahead predictive control
scheme, which considers not only the design of the instant
value of the control signal but also its future values. In
general, predictive control strategy consists of the
following four parts:

1) At each sampling time, the estimated value of neural
network model g}(k+i) is predicted over the prediction
horizon ¢ =1, -+, V,. This prediction depends on the
future values of the control signal u(k+3i) within a
control horizon ¢ =1, -+, ¥y, where N, < N,

2) A reference trajectory r(k+1i), i=1,, N, is
defined which describes the desired process trajectory over
prediction horizon.

3) The vector of future controls is computed such that a
cost function depending on the predicted control errors is
minimized. The first element of the control vector is
applied to the process.

4) The prediction error between the measured process
output and the predicted output is used for the systems
identification.

Steps 1) - 4) are repeated at each sampling instant; this
strategy is known as a receding horizon control.

As a result, future values of setpoint and the system
output are needed to formulate the control signal. Since the
neural network model represents the system to be
controlled asymptotically, it can be used to predict future
values of the system output. For this purpose, let N be
prediction horizon (N,=/N) and N,=/, be simply
selected in the paper. Then, we can denote the following
vectors:

Ry = [Tk+1;7"k+2; "';T'k+N]

?Mk= [l;k+1;3;k+2, "';?;k%—N], (23}

EMk = [ek+ 15€k+2) "7 Gk N]
as the future values of the setpoint, the predicted output
of neural network model and the error vector between two

vectors, respectively.
Define the control sequence as

Uni = [u, U1 1, "';uk+N—l]l (24)

and consider the following control performance function:

1 ...
J=3 (Evi By (25)
Then the control purpose is to find Upy, such that J is

minimized. Using the gradient projection method, the
control sequence U is updated at each iteration as follows:

Unk+1= Ui — 1Dmpe (26)

where, Dpyy, denotes the search direction at the present
time instant k. Also Dyy. is determined in the sense that
the negative of the gradient projected on the constraints
gives the direction in which the control performance
function decreases most rapidly [15]. The search direction
at time k is given by

8V,
Dy =~ EnpPrip—L =— EnpPail wi

27
8 Ui
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where Py, called the projection matrix, is a N XN
diagonal matrix initiated to unity Py, = { and

o0
kst 0 - 0
Suy,
OYki2 OYrr2 0
I'me= 6w, dups, (28)
irn OYkrny  OYkiw
our Ukt QU4+ N—1

I'pp is the gradient of the control performance function
with respect to Upp, which can be derived from the
RBFN model and can be easily evaluated. we describe the
computing procedure for Iy, in the Appendix A.

The individual element of the control sequence is

updated by clipping the results obtained from Eqn. (26)
according to

Au < Au(k+i—1) < Au (29)

where Au(k+i—1)=u(k+i—1)—u(k+i—2)

and each Au and Au can be arbitrarily chosen as very
small value.

The projection matrix P is then updated according to
Uy at each iteration.

_Jo if Au<Au(k+i—1) <Au
Py—1(3,i) otherwise

i=12,-,N (30)

After finding the new control sequence, the first element
of Unp+1 is applied to the system as the control signal.

4. Simulation Results

In this Section, we present some simulation results to
validate the proposed predictive control scheme for both
continuous-time and discrete-time chaotic systems. And,
in order to evaluate the performance of the proposed
controller, we compares the results of a RBFN based
predictive controller with those of a NN based predictive
controller.

4.1 Controlling the Duffing system

In tracking Duffing system, we define the initial system
state as (0, 0) and the learning rate is chosen as 0.001.
Reference signal is solution in case that parameter b, of
Duffing equation is 2.3. Also, in on-line learning procedure,
the number of hidden nodes is 10 and to avoid complex
model structure order, we make each of feedback
input/output signal have only one. The prediction horizon
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is selected as 3 and the sampling time is defined as 0.05.
And, NN model has two past outputs of the plant, one
current output and one past output of controller as the
inputs. The hidden layer of the NN model has five nodes.

Note that we can obtain the system identification error
and control performance error from simulation results (see
Figs. 3-6). The mean-squared error (MSE) for system
identification and control performance indicates in Table 1.

From the results obtained above, we can see that
although identification error of RBFN model are more than
those of NN model, RBFN based predictive controller
shows a better final control performance, and it is faster
and more effective, as compared with the NN based
predictive control.

Table 1 Mean square errors of Duffing system

RBFN NN
ID Error | Control Error | ID Error | Control Error
(MSE) (MSE) (MSE) (MSE)
State | 0.0328 0.0158 0.0108 3.7029
State y| 0.1138 0.0712 0.0113 11.4418

4.2 Controlling the Hénon system

In this subsection, simulation .results of the proposed
predictive control scheme for the discrete-time chaotic
systems are presented. In this simulation, the control
objective is to regulate the chaotic orbit to the desired
point. As like continuous-time chaotic systems, the number
of hidden nodes is 10 and learning rate is chosen as 0.01
and to avoid complex model structure order, we make each
of feedback input/output signal have only one. The
prediction horizon is selected as 3 and the system initial
state starts at (0, 0). And, NN model for Hénon system
has four inputs; two past outputs of Hénon system, one
current and one past control signal of the controller. Also,
the node number of the hidden layer for the NN is 10.

On-line identification result for Duffing system
6, - -

" “Plant '
RBFN model |
aly A ; ) Lo ; e s

""g100 5200 9300 9400 9500 9600 9700 9800 9900 10000
step

T Pant
~ RBFN mode! }

A

y
» A b on sro

S B S S S
9100 9200 9300 9400 9500 9600 9700 9800 €300 10000
step

Fig. 3 Estimated output of RBFN model vs. output of system

Figs. 7 and 8 show the output of the system and the
output of RBFN model approximating Hénon system,
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respectively. Also, Figs. 9 and 10 show the regulation
control results for Hénon system and the output of NN
model, respectively. Table 2 describes the error between
the desired output and the system output and the error
between the system output and the estimated model
output, where the reference signal r is [0, —1].

‘While the controlled chaoctic signal based on the NN
converges to the desired point at about 800 steps, the
controlled chaotic signal based on RBFN converges to the
desired point at about 200 steps. From the results obtained

Control result for Duffing system

" Reference |
Pilant H

x
b Ao wrn s o

FR IS . fiid
9500 9600 9700 9800 9900 10000
step

9100 9200 9300 9400

" Reference |
Plant ;

Yy
S A b owmasao

B f . S
9100 9200 9300 9400 9500 9600 9700 9800 9900 10000
step

Fig. 4 State output of system vs. reference signal (RBFN)

On-line identification result for Duffing system
I Plant I
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9000 9100 9200 9300 9400 9500 9600 9700 9800 9900 10000
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=~ 0 ‘ ’ C
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4
6

Fig. 5 Estimated output of NN model vs. output of system

Control result for Duffing system
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5000 9100 9200 9300 9400

Fig. 6 State output of system vs. reference signal (NN)

above, we can see that a RBFN based predictive controller
shows a better control performance as compared with a
NN based predictive controller.

Table 2 Regulation errors of Hénon system

RBFN NN
System Control System Control
ID Error Error ID Error Error
State x| -0.0002594 | -0.0009252 | -0.0458 -0.0734
State y | -0.0004414 | -0.0009233 | -0.0082 -0.1997

5. Conclusions

In this paper, we have presented the predictive control
of the chaotic systems with RBFN model, which was used
to perform the multi-step prediction on-line. To control the
chaotic systems, we employed an on-line identification unit
and a nonlinear feedback controller, where the RBFN
identifier was based on a suitable NARMA real-time
modeling method and the controller was based on
predictive control scheme. In our design method, the
identifier and controller were implemented using a
gradient-descent procedure that represents a generalization
of the least mean square(LMS) algorithm. Also, we have
introduced a projection matrix to determine the control
input, which decreased the control performance function
very rapidly. And the effectiveness and feasibility of the
proposed control method have been demonstrated with
application to the Duffing system and IHénon system,
which are two representative continuous-time and
discrete-time chaotic systems. From the simulation results,
we have shown that the RBFN based predictive controller
was faster convergence property and more accurate control
performance than the conventional NN based controller.
Also, we have verified that the proposed predictive control
scheme worked well for various chaotic systems.

Appendix A

We know that the predictive control scheme is applied
to RBF networks for improvement of system identification.
Then, the work for finding the mmportant parameter e iS
needed in control design. We can find the Jacobian matrix
Iy by differentiating ¥y with respect to Um:. The
following illustrates procedure for computing the elements
in the Jacobian matrix for ¥=3.

_aAIH»'I__ lEH G( _ / M
gu= =— zflw; X Z; 0')

(1,1 FYm 5
i} k2 0
T
aUk Uk — i
Up1— 24 0
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o g . The Output of NN Model
(1,2) 9122—{_);'111[‘Aﬂ =0 . . L . -
k+1 - -
_ 20 E ‘
1,3) gi= au £ N

where, x =[y by Y ko1, Uk, Uit .
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Fig. 10 Estimated output of NN model
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