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Abstract

A neural model predictive control strategy
combining a neural network for plant identification and a
nonlinear programming algorithm for solving nonlinear
control problems is proposed. A constrained nonlinear
optimization approach using successive quadratic
programming combined with neural identification
network is used to generate the optimum control law for
complex continuous chemical reactor systems that have
inherent nonlincar dynamics. The neural model
predictive controller (NMPC) shows good performances
and robustness.
 To whom all correspondence should be addressed.

Introduction

Since the landmark paper of Cutler and Ramaker 4), the
model predictive control (MPC) techniques have been
continuously developed and applied to process industries.
Early versions of them are MAC (Model Algorithmic
Control 24.25)), DMC (Dynamic Matrix Control 4)),
IMC (Internal Model Control 8)), etc. Though the above
technologies differ from each other in detail, they have
some similarities and they can be categorized as MPC.
The complete review of MPC is given in Garcia et al. 9)
MPC is a multi step predictor method and has been shown
to perform well in controlling processes in unstable
operating regions. In addition, both input and output
constraints are explicitly included in the MPC controller's
design, thus facilitating the solution of more physically
realistic control problems and allowing process operation
in complex state space regions. One of the major issues on
application of MPC is how to get the plant model of the
controlled process. Chemical processes are inherently
nonlinear and their complicated dynamics often prohibit
the successful implementation of MPC in chemical
industries. In this situation, the use of a neural network
may be considered as a reasonable alternative for solving
problems in modeling of those complex dynamics. Neural
networks provide a unique computing architecture whose
potential has been broadly tested and have been used to
address problems that are intractable or cumbersome with

traditional methods. Neural networks are massively
parallel systems that rely on dense arrangements of
interconnections and surprisingly simple processors. 5) In
this paper, we develop a neural model predictive control
(NMPC) for handling the model uncertainty and
nonlinearity problems in chemical process control. Based
on system identification techniques using neural network,
we build a nonlinear model predictor for model predictive
control. Using this neuro-model predictor, the constrained
nonlinear programming algorithm generates optimal
control input for a given process. The developed control
algorithm is tested on chemical reactor systems and it
shows good performances on nonlinear, model-plant
mismatch, and even time varying cases.

Process Identification using Neural
Network

Identification using a neural network is a problem of
nonlinear mapping between an input and an output
space. It is equivalent to the problem of synthesizing an
associative memory that retrieves the appropriate output
when presented with the input and generalizes when
presented with new inputs. 22) For identification of
nonlinear, uncertain processes, we use the neural
network as a nonlinear function approximator. After
training, the neural network learns the forward system
dynamics, and it behaves as the nonlinear process. A
leamning dataset for the neural network can be
constructed with randomly varying manipulative inputs
within the desired operating range and the process
outputs according to those random manipulattve inputs.
Thus the trained neural network presents the open loop
nonlinear input-cutput mapping relations of a given
process. It should be noted that to use the neural network
as a function approximator, the manipulative inputs
should be generated as random patterns or pseudo
random binary sequence (PRBS) signal patterns, so that
the neural network can learn the input-output relations of
the process within the full range of the operating domain.
This discriminates our identification neural network
from the conventional model learning procedures that
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use the fixed trajectory of manipulated inputs or
controlled output in some robotics or mechanics fields.
Good examples of traini % neural networks can be found
in previous works. 1,21,10,23) Another one is that for
function approximation, scaling of the learning dataset
should be required since the activation function typically
used in the neural network ranges between 0 and 1
(when standard sigmoid function is used) or between -1
and 1 (when hyperbolic tangent like function is used).
We use a feedforward network with modified hyperbolic
tangent 15) as activation functions and natural logarithm
for scaling function for the training data. The network is
trained using error back-propagation algorithm with
Rumelhart's momentum method and initial
distribution of the network's weights is done by random
value generating between -1 and 1. The network consists
of one input layer, one hidden and one output layer. The
input nodes consist of measurable process states or
process output variables and manipulated variables at
each time step t=k. The teaching patterns are the state
variables in the next time step t=k+1. When the current
values of the process state variables and manipulative
variables are presented to the network, the network
generates the predicted values of the state variables at
the next sampling instant. Thus the proposed neural
identification network acts like the one step ahead
predictor of the process output. This one step ahead
predictor is iteratively used for generating multi-step
prediction of process outputs. Though, at the leaming
stage of neural network; it is possible to construct multi
step predictor, the one step predictor involves less error
in its predictions. 14) The structure of the neural
network is shown in Figure 1.

Control System Design

Strong nonlinearity and complicated dynamics of
chemical processes presents challenging control problems
and currently many researchers are developing control
techniques that are based on nonlinear systems concepts.
Mainly those approaches are classified as internal model
approaches by Economou ef al. 67), which are
extensions of internal model control to a nonlinear system
(NLIMC) using operator theory, differential geometric
approaches by Kravaris and Kantor 12,13) and
predictive control approaches by Li et al. 16,17,18,19),
Bequette 3), Sistu and Bequette 27) and many other
researchers. An extensive review on nonlinear control of
chemical processes are done by Bequette. 2) According to
Bequette, predictive control strategies have been well
received by industry because they are intuitive and
explicitly handle constrains. One limitation to the existing
method is that they are based on linear systems theory and
may not perform well on highly nonlinear systems. In this
paper, we use the nonlinear predictive control approach
for generating optimum manipulated input at each
sampling time. The successive quadratic programming
(SQP) code is used for solving optimization problem in
cooperation with neural network mode! described in the

previous section. The objective of nonlinear predictive
control is to select a set of future control moves (control
horizon, M) to minimize a cost function based on a desired
output trajectory over a prediction horizon (P). The

optimization problem at sampling time 7 = ¢, is setup as
follows:

k+P

e+, . .
min &) = [ dt = 31y, ()=YpuaDF g
w(k),... u(k+M-1
subject to

x* =f(x»",P’l) (1-1)

; dynamic model constraints

Ya=8(%)
; model outputs that (1-2)
are functions of the state variables

Although the optimization is based on the control
horizon, only the first control action is implemented. After
the first control action is implemented, plant output
measurements are obtained. Compensation of model-plant
mismatch is performed, and the optimization is performed
again. Since the model-predicted output y, is not exactly
equal to the process output at the end of the time horizon,
an additive output disturbance may be included after the
process identification is performed. 2) The compensation
of model-plant mismatch is as follows:

e the additive output disturbance d(k) is calculated as

d(k)=y(k)-y.(k) )
where y(k) is the actual plant output and y, (k) is the
model prediction value.

o the corrected model prediction is calculated as
Yoed(K+0) =y, (k+i)+d(k) , fori = ItoP(3)
where P is the prediction horizon of the controller.

The two major problems to be solved for applying
nonlinear predictive control technique are the choice of
constrained optimization technique to solve the equation
(1) and how to soive the dynamic model constraints (1-1).
If we have a_ precise plant model, we can solve the
dynamic model constraints using several methods such as
sequential, simultaneous, intermediate, or linear
approximation techniques. 2) But how can we get the
dynamic model for highly nonlinear processes? One
possible answer to this question is the use of neural
network to model the forward dynamics of the process. In
this paper, we use the neural network discussed in
previous section as a forward process model. There are
several important benefits for using neural network as a
process model. Practically, the elimination of integration
of ordinary differential equations greatly reduces the
overall computing time of nonlinear controllers. Second,
we can train the network within wide operating range, that
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enhances the interpolation capability of the neural process
model. Third, we can get the process output predictions
based on the actual process open loop characteristics and
can get more realistic information compared with the use
of ill-posed material and/or energy balance model. Several
optimization algorithms can be used for generating
optimum control input such as GRG2, SQP, QP, and even
unconstrained nonlinear algorithms. Among them, the
constrained nonlinear optimization algorithm group has
eminent benefits for explicit handling of the constraints on
manipulated or output variables, fast convergence, and
numerical stability. The previous work 29) deals the
problem with unconstrained optimization algorithm and
penalty cost function. The internal signal communications
between SQP and neural network are shown in Figure 2.

Application Example
The CSTR model in this example is a part of a larger
test system introduced by Williams and Otto. 20,28) The
CSTR system supports the following multiple reactions:

A+B—*5C,

C+B—>P+E,P+C—-5G

The desired product is P, while G, C, and E are
byproducts subject to quality and environmental
constraints. Reactants A and B enter as pure components
in separate streams with flow rates Fai and Fbi,
respectively. The manipulated variable is the flow rate Fai
and cooling water temperature T. The input stream Fbi is
considered to be a disturbance variable. The equations
describing the kinetic behavior of the above reactions and
the dynamic mass balance for the CSTR represent a
coupled set of nonlinear algebraic and ordinary differential
equations. A description of these equations has been
provided by Williams and Otto:

dX%t = Fe %r —rxl— Xa where, Fr = Fai + Fbi

de/dt = F%r—-rxl—rx2~Xb

dX%t =2rxl-2rx2-rx3- Xc, dX%t =2rx2 - Xe

D/ — 1 5rx3- Xg, DB/} = rx2-0.5m3- Xp
rxl=5.9755E9exp({—12000/T)XaXb pV /(60 Fr)
rx2=2.5962E12exp(—15000/T)XbXc pV /(60 Fr)
rx3=9.6283E15exp(—20000/T)XeXp pV | (60Fr)

The control objective of this system is to maximize the
yield of the desired product P using regulation of two
related state varniables Xc and Xg. In this example, our
neural network has a 5-8-3 morphology and the input
layer consists of two state variables (Xc, Xg) and two
manipulated variables (Fai, T), and one bias node. The
bias node has a value +1. The one step ahead prediction
performance of the trained neural network model is shown
in Figure 3. We set the prediction horizon P=1 in this
example. The control performance is shown in Figure 4.
In these figures, the control performance of Xc seems

better than that of Xg. In MIMO systems, these kinds of
interactions are rather natural and there is a trade-off for
improving the control performance among coupled
controlled variables. The controller designer can handle
this problem by imposing proper auxiliary constraints to
desired controlled variable in the optimization
formulation.

Conclusion

The neural model predictive control strategy using
neural network and constrained nonlincar optimization
technique is discussed and tested by controlling a SISO
and a MIMO CSTR system. The use of neural network
for system identification is a feasible alternative when
model equations are not known or only historical input-
output data are available. The features of the neural model
predictive control (NMPC) are:
o It combines the mapping capability of a neural network
with the nonlinear optimization technique for controlling
nonlinear processes that have model uncertainty, hard
constraints on manipulative or controlled variables.
o It learns the uncertain process dynamics using only
available plant states through open-loop trends with
random signal or existing control history
e Appropriate selection of the topology of a neural
network can compensate the insufficient information and
can increase mapping capability
o The optimizing control inputs can be calculated fast
because the equation solving step required in MPC does
not exist in NMPC.

The NMPC shows good control performance for
processes with nonlinearities and model-plant mismatch.
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