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1. Introduction

Design of a control system implies selection of suit-
able measurements, identification of the process models
and choice of the appropriate control law. Much
research in the field of process control has been primar-
ily focused on the design of a control system capable of
maintaining the process at its optimal steady state de-
spite changing various operating conditions. But there
has been a great need of a more effective control tech-
nique due to the increasing energy and raw materials
costs and the increasing complexity of processes. More-
over, many processes are intrinsically nonlinear, and
the use of linear control methods to handle the
nonlinear processes has been restricted within a certain
region. Thus it is essential to develop a new control
technique applicable to nonlinear systems.

Recently, rapid development of digital computer
technology has made it possible to implement more so-
phisticated control methods. The main advantages of
the computer control over classical analog control lie in
the operating cost and the flexibility. A model predic-
tive control method(MPC) has recently received much
attention as one of the computer control techniques
which meet today’s need for more effective control
strategy. The MPC method is characterized by two fea-
tures ; the use of a proper plant model in the control
system structure and the predictive nature of a control
algorithm. It employs the model to predict the process

conditions which are used to compute proper control
actions. The MPC method was subsequently developed
[1-6] and applied successfully to several industrial pro-
cesses involving multivariable process dynamics[7].

In practice, operating conditions change with time,
and physical parameter and dynarmic characteristics of
processes are poorly known. As a promising strategy
which is potentially applicable in these situations,
adaptive control techniques has been developed. In the
adaptive control system the model parameters are
adjusted at each sampling time to compensate for the
significant changes in process characteristics. So far, a
great many adaptive control methods have been pro-
posed, but only a few of them use the great advantage
of MPC scheme. Moreover, since most of the adaptive
model predictive control(AMPC) methods developed so
far are based on the linear system models, they cannot
handle nonlinear situations which arise especially in
the control of chemical engineering processes.

Recently, the class of bilinear model has been intro-
duced as a useful tool for examining many nonlinear
phenomena. The bilinear models are nonlinear jointly
with respect to the state and the input but linear sepa-
rately, and their structural properties are similar to
those of linear models. Many successful application
results summarized by Mohler and Kalodzies[8] illus-
trate the effectiveness of the use of bilinear models as
approximations of nonlinear systems. This paper en-
deavours to present various bilinear models and predic-
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tive control schemes developed so far. Couple of biline-
ar controller design methods and examples of chemical
process controls are shown to help understanding.

2. Bilinear Systems

Linear systems are described by linear differential
or algebraic equations and the principle of superposi-
tion applies. Nonlinear systems are described by com-
plex nonlinear differential equations and linear approx-
imation methods have been used in the control of the
nonlinear systems. However, the intrinsic limits of the

use of linear models appear more and more evident.
Usually linear approximation of a nonlinear system is
possible only when the behavior of the system is con-
fined in the region around some normal operating lev-
els. As an approximation to general nonlinear plant, the
bilinear model can provide a more accurate representa-
tion than linear onel6]. It has been reported(9] that for a
general plant in which the control appears linearly, dy-
namically equivalent bilinear model can be found. The
recent applications of bilinear models studied so far
were summarized in Table 1.

Table 1. Recent applications of bilinear models.

Process

Control algorithm

Reference

Waste water treatment

Self-Tuning
minimum variance

Goodwin et al., 1982 [10]
Goodwin and Sin, 1984 [11]

Blood pressure

Self-Tuning
pole assignment

McInnis et al., 1985 [12]

pH process

Self-Tuning
pole assignment

Gilles and Laggoune, 1985
[13,14]

Fermentation

Self-Tuning
minimum variance

Dochain and Bastin, 1984 [15]

Cancer drugs

Optimal control

Biran and McInnis, 1979 [16]

Solar system

Optimal control

Wang and Dorato, 1983 [17]

CSTR

Optimal control

Cebuhar and Costanza, 1984[15]

2.1 Review on Bilinear Models

Recently extensive studies have been done on the
structure of bilinear systems. One of many appealing
features of a bilinear structure is that its equations(e.g.,
state-space or autoregressive moving average(ARMA)
equations) describe approximately those systems whose
dynamic behavior shows linear dependence on the
states or inputs and on the system parameters. Thus
certain attractive characteristics of linear optimal con-
trollers can be applied to the bilinear control systems. A
typical bilinear model has the form

X = AX(D+ 3 BUDX() + CU) (D)
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where X(t)ER"™ and U()ER™ are state and input
vectors respectively. The block diagram of (1) is shown
in Figure 1. The model consists of multiplicative and
additive terms.

Much effort has been given to the bilinearization of
nonlinear systems with input appearing linearly.
Ruberti et al[19] summarized the theoretical develop-
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Figure 1. Bilinear System Structure.
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Table 2. Single-Input single-output(SISO) bilinear models.

Type Model Reference
* CONtINUOUS
x4 ﬁ:l (a;+vl, H)x"7V = ﬁ:o bt
CO;““”‘;‘S’ +efx, f) lonesuc, 1977,
SCIEtE * discretd [211]
state—space, N .
x(k+n)+ gl(a,ﬂ-l—vln,l)x(k-f—n—i): Zlb,u(k-}-i)
i n d
! discrete, vk+1)= 2 laylk+1;) Ohkawa an )
' deterministe i s Yonezawa, 1983
| parametnc +b,y(k+1—Dulk+1—7) +culk+1-5)] (2]
#n I
y(t) = lzlajy(t —i) - }Z[)Cj)'(t_d_j)u(tvdAj)
| + I?Z:)bku(t~d—k)+77(t) oo and
i dlscret?, where, ¢ :time delay (d=1) Joannou, 1989
| pararnetric, . (2]
: 2(¢) = w(t) — glaiw(t—z’)
p
— ]Z:]chw(z‘—d—j)u(twdﬂj)
Alz)y(t) = A(z)e(t)
[B(z)+ 3 [C(2)y(t—k) 121 ult— k)
=0 Svoronos,
discrete where, k-1 :tme delay (k=1) Stephanopoulos
7 1e Zy(t):y(t_l) .
polynomial, A)=14az+ - + « Taz.,2""" and AITS’ 1981
stochastic B(z)=by+bz+ -+« +5,2" [24]
C(z)=cy+crz+ - - - +C2"
PANGRY=1 Az o A2
diserete, | *#(t 1) = PO + @e(D)ul) + Rl £) + (1) Dai, Sinha and
w(t) = Sx(t) Puthenpura, 1929
state-space, (1) = w(t) + e(t) [55]
? * parametric
dA dC
yi= ],Z:lajyi—n* /.Zlocjeifl
| P -
. ‘ + 2 f: Br€i-pyi-i Blehnska,‘ 10
discrete, k=0 1=1 [26]
parameteric, ¢ * polynomial
. ! P
polynomial, ; A(B)y,= C(B)e; + kz::(] glﬁklei—kyi—l
|
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Type

Model Reference

Byi: Yi-1

By, =y, 4

discrete
parameteric
polynomial

where, B : hilinear delay operator

(B"y)yi=y, wyi=(y;)B";
AB)=1+aB+a,B'+ -+ - +a,B"
CB)=1+cB+eB+ -+ - cycB™ Bielinska, 1990
If dA=0, the model is homogeneous only in the output [26]

If dC=0, the model is homogeneous only in the input

If dA=0 and dC=0, the model is homogeneous both in the
output and in the input

Superdiagonal = g, =0 for all <k

Subdiagonal B, =0 for all i<k

Diagonal D Bw=0 foral i<k

stochastic * polynomial

() = x(t) +e(t)
discrete where, k-1 : time delay

polynomial, g ') = y(t—1)

| state-space,

Clg")=1+cq"
* state—space

i 1

| y(¢) = Hx(t) +e(t)

A(g D)x(t) = q *Blg Hult)
+1Clg HY—A(g)] et)

+q°* 2"0 ﬁlx(th')u(t'j*z%l)dz,
=0 5=

(k=1) King, Burnham
Alg D =14aqg '+ - -

| Blg ') =by+bg '+ - -

x(t+1) = Pc(t) + Qu(t) + Re(t)
+ Zlu(t—H—l)D,x(z‘)

and James,
: an(lqina ]‘Em
“bapa ", b0 [27]
CCaeq

ments during the sixties, and numerous theoretical
results on the bilinear systems have been reported.
Much of the developrment up to the late seventies can
be found in the survey paper by Mohler and Kolodziej
[8]. Inagaki and Funahashi[20] studied the bilinear real-
ization problems for inhomogeneous systems. The vari-
ous types of bilinear model used in the studies of
nonlinear systems are summarized in Table 2 and Table
3.

2.2 Development of Bilinear Models for Chemical
Processes

Many processes, particularly chemical engineering

processes, are by nature bilinear systems. For example,
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in a heat transfer problem a bilinear system arises if
the heat transfer coefficient becomes a control variable.
Energy balances commonly contain products of flows
and temperature. As an illustration, bilinear approxima-
tion of continuous stirred tank reactor(CSTR) system is
introduced in this manuscript. Comparison between lin-
ear and bilinear approximation with and without pa-
rameter estimation is also presented. The simulated
CSTR process consists of an irreversible, exothermic re-
action A — B, in a constant volume reactor cooled by a
single coolant stream which can be modeled by the fol-
lowing equations{31].

dC (¢t
(Z( L — Gl Cam Calt)] —kCa(B)expl 5l @
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Table 3. Multi-Input muiti-output(MIMO} bilinear models.

Type Model Reference
confinuous y(£)=(A+ Z Biui(£)y(t)
e ’ . Lo, 1975 [9]
sialerspace 2(t) = (C+ 3 Dwi))y(1)
. . x(t+1)=Ax(t) + Bu(t) + u(t)y"(+)p .
deterministic discrete, De La Sen, 1986
x(0) = x4
state-space (28]
y(t) = Cx(t)
i Benallou and
contnuous, x=Ax+ 2 w;Ax+Agu Mellichamp, 1983
state-sapce i=1
[29]
* polynormial
na nb
Xt= ZlAz’XtAi + Ut+ ZleUl‘f
i= j=
na nb nc
+ 2 2 X CauX, U
i=1 j=1 k=1
Superdiagonal : k=1 and C;=0
discrete, for each 1>)
stochastic parametric, Diagonal k=l and C;=0 Lessi, 1990 [30]
‘ state—space for each i>]
Subdiagonal :k=1and C;=0
for each i>j |
* state-space }
X,.1=DX,+EU,+ UFX,
‘ Z,Z GX{"f—Hl)t

AR = 4l 7= 1) +aCaDexpl o] +aCaltla,

[ To—T(#)] — ayq.expl "Z?’*][ Ty~ T(H] 3
where
a; = (g/V)
a, = [ (—aHk)/(pC,W)]
ay = "E/R

ay =[ (0.C,0)/(pC, W]
as = [ (=hA)/(0LCh)]

Linearization around the steady state values of reactor
temperature (T',) and coolant flow rate (g.,) is carried

out for the exponential terms, exp {%] and g, exp[%].

Bilinear Model Predictive Control Methods for Chemical Processes

Using Taylor’s series expansion yields

ool 7yl = ewl F1 -1 TO-TIU ) ewl $1 (4)

as Qs
< s c cs
g.exp qc] a.expl QCs] +agl g.—q4l (5)

where
a5 = [ 1=(;5)] expl 2*]
Substitution of equation (4) and (5) into equation (2)

and (3) and rearranging will yield the following simple
bilinear model for CSTR.

dC4(t)

dr = bcch(t)+deA(t)+bvs (6)
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ATy ()4 byCalt) + b, CAO T +bsal D +8s (T)

where
b, = —a, +asg.exp(as/q.) —asacde
by = azexp(ay/ T+ (azay/ Tdexplay/ T
by = —(avas/ THexplas/ T))
by = —aytasa
by = ayTy—asas Ty

by = a\Ty—ayqexplas/qe) +asaeq Ty

ba = —a—kyexplas/ T — (kyay/ Tdexp(ay/ T)
b(:Z = (k()aﬂ/ Yf)exD(aﬂ/ Ts)
by = aiCa

The parameters of equation (6) and (7) are estimated at
each sampling period using a recursive least square
method. The coolant flow rate was changed from an in-
itial values of 100 1/min., to 110, to 100, to 90 and back
to 100, at 7 min. interval.

Figures 2 to ® show the concentration and tempera-
ture response to step changes in the coolant flow rate
(g.) with and without recursive parameters estimation.
The results for the simulated CSTR, the bilinear models
and the linear models are explicitly shown in these fig-
ures.. It can be seen from the figures that bilinear mod-
els describe the dynamics of the CSTR more accurately
than linear models. Considerable improvement in the
predictions of bilinear models is observed when param-
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Figure 2. Concentration response of CSTR without
parameter estimation.
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Figure 4. Concentration reponse of CSTR with parameter
estimation.

eter estimation algorithm is implemented.

3. Non-Adaptive Bilinear Model
Predictive Control

A need for development of a more effective control
method to control more complex chemical processes
often arises where the traditional techniques are not
well adapted. Recent development of digital computer
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Figure 5. Temperature response with parameter
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technology has made it possible to implement more so-
phisticated control method.

Predictive control techniques have lately drawn
much attention as more effective and powerful control
schemes. A general predictive control technique is char-
acterized by

1. an objective function to be optimized

2. a desired output trajectory

3. a model structure for predictions
Usually, an objective function consists of the deviation
of the predicted outputs from the desired output trajec-
tory and a penalty on the control input. The purpose is

then to find the control law which minimizes the objec-
tive function over a certain time horizon in the future.
The inclusion of control actions in the objective func-
tion is necessary to prevent excessive control action or
to maintain stability.

The minimization problem is formulated to calculate
a sequence of future control inputs. In practice, at each
sampling instant, only the present input is calculated
and implemented. The inclusion of future inputs in the
formulation improves controller performance, although
these inputs are neither calculated nor implemented.
By increasing the weighting factors for the error terms
in the objective function, we can include implicit con-
straints on the outputs. Explicit constraints on the in-
puis can also be included, and the resulting optimiza:
tion problem is a quadratic programming problem.

In the last decade, model predictive control( MPC)
method has been employed as an advanced process:
control technique at many factories and has been ap-
plied to solve several industrial process control prob-
lem. Many reports have heen addressing the industrial
successes on MPC in many chemical process control ap-
plications. For further development of MPC, it is a mat-
ter of interest that one should understand a state of the
arts In the industrial applications of MPC as well as the
evaluation of MPC by the industrial practitioners. How-
ever, in spite of the fact that real-world processes have
nonlinearities, almost all the MPC method so far ap-
plied to them use linear models of the processes. The
nonlinear MPC is theoretically one of the interesting
research area, but many difficulties still exsist.

Table 4. Applications of MPC algorithm(linear and bilinear).

Process Type Reference
Heat exchanger SISO Montague et al., 1985 [35]
Engine test beds SISO Tacey, 1987 [36]
Heating systems SISO/MIMO Jota, 1987 [37]
Robot manipulators SISO Lambert, E., 1987 [38]
Extruder SISO M’Saad at al., 1987 [39]
Tracking system MIMO Favier, 1987 [40]
Dryers SISO/MIMO Lambert, E., [38]
Cement mill SISO Al-Assaf, 1987 [41]
Semi-batch reactor SISO Sanchez Del Rio et al., 1990 [42]
Stirred tank heater SISO McIntosh et al., 1990 [43]
Distillation column MIMO Coelho et al., 1990 [44)

Bilinear Model Predictive Control Methods for Chemical Processes




Several MPC’s based on the parametric input-output
models have been developed from the concept of
adaptive controllers[32-34]. Clarke et al.[1-2] developed
the generalized predictive controller(GPC) based on the
controlled auto-regressive integrated moving-average
(CARIMA) model which are known to useful to elimi-
nate the offset. The applications of MPC algorithm
were summarized in Table 4.

3.1 Review on Bilinear Control Method

Most of the bilinear controller designed so far are
derived from or rely on stabilization theory or optimiza-
tion theory. In general an optimal control law results
from the minimization of some specific cost function.
Wei and Person[45] considered the optimal control prob-
lem for commutative bilinear systems and obtained
constant optimal input vectors for a time invariant
system by using a quadratic cost function. Grasselli et
al[46} described the output regulation problem of bilin-
ear systems suject to constant disturbances under the
assumption that the system is reachable and observ-
able. Their controller consists of additive and multipli-
cative control terms. The additive term can be regarded
as a compensator for disturbances. Derse and Noldus[47]
developed an optimal controller for bilinear systems
where the inputs are either purely additive or multipli-
cative. By solving the optimization problem of a modi-
fied quadratic cost function they could obtain a quad-
ratic controller. The stability of the control system was
verified using a positive quadratic Lyapunov function.
Longchamp(48] developed a feedback controller for bi-
linear systems and used the Lyapunov stability criteri-
on to prove the stability of the control system. His de-
sign is based on the switching hyperplane which is de-
pendent on the behavior of the state vector, and thus
the feedback control law is discontinuous. Derese and
Noldus[49] also designed a feedback controller for bilin-
ear systems. By solving an algebraic Riccati equation,
they could obtain a stabilizing constant matrix, called
the feedback amplifier, which depends on a few param-
eters to be specified. In the design of a nonlinear con-
troller for bilinear systems, Derese and Noldus[47] used
full order observers and chose a quadratic Lyapunov
function consisting of the observation error. Many of
the bilinear controllers proposed so far are based on
Lyapunov stability theory and a state-space representa-
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tion.

Yeo and Williams[50] developed a bilinear model
predictive controller based on ARMA model. By predict-
ing the future outputs from bilinear model under the
assumption that time delay and disturbance are known,
they could obtain a stable predictive controller for bi-
linear systems.

3.2 Design of Control Law

In the GPC algorithm, the future output prediction
and the predictive control law are developed by solving
the Diophantine equation of the CARIMA model, which
increases the computational burden, especially, in the
case of MIMO processes. Moreover, if the processes are
time-varing or show severe nonlinear behavior, the
model parameter adaptation is required to trace the
process dynamic behavior and the numerous Diophan-
tine equations should be solved whenever the process
model is updated. For the above reason, the application
of GPC to the practical chemical processes are few. In
this manuscript, we use the ARMA model. The predic-
tive control algorithm based on ARMA model is practi-
cally useful and easy to be implemented to real pro-
cesses.

The multivariable system to be controlled is as-
sumed to be described by a discrete, bilinear ARMA
model of the form

YR =30 ALY+ S B Y(k—dulk—i—T)

®)
+ C;U(k—i— 1]
T is the known time delay, but we do not need the
exact knowledge of the plant structure. We will simpli-
fy the problem by considering one-step ahead predic-
tion.

The computation involving the iterations of large di-
mension matrices causes numerical difficulties. The
prediction of the future outputs Y*(k+1),..., Y*(&+T)
does not require future inputs. Since the present output
error vector E(k) given by (9) is known, these predict-
ed future values can be obtained by successive substitu-
tions.

B = Y(B - Y (k) (9)

The computations involving the iterations of large
dimension matrices cause numerical difficulties. The
objective function is given by
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J= [ Y k+T+) - V' k+T+D)] T (Y,(k+T+1)

- Y+ T+1) 1+ U'(k)BU(K) (10)
where
I'=diag{yi, . . .73}
B=diaglsi, . . B

Minimization of (10) yields[51]
UR)= W[ Y, (bt T+D = ATY (k+ 1)~ (Y(B)— Y (B) -

2 ATV R+ T+1-)+ 3 B ¥ (bt T+1 =D 1= (11)
+CI Uk +1—1))]

where
W= (R+CH(R+CH+B] (R+C)'T (12)

R=[ BLY' (k+T) . . B, Y (k+TD)] (13)

3.3 Design of an Offset Compensator
At steady-state, eqn.(8) gives
Yi=lim V' (B=AIY, +(B+CHU,  (14)

where

and Y. and U, are steady-state values of output and
input variables respectively. Sustitution of (14) into
(11) yields upon rearrangement

(B C)TIUBL+ C4 BU (B DIV YD (o

+(B+CDII( B, +CH U,

where B, = [B]‘1 Yg..B;m Y. From (15), we can see that
there is no offset if B=0, and that nonzero 3, always
gives offset. We now introduce a constant offset com-
pensation matrix K€ R"™ such that (11) becomes
Uk = W KY,(k+T+1)—(A]— A+ KAD
Y (k+TD—K{Y(BD—Y (B}— (16)

;ZEIIQ{A,‘-Y‘(k+ T+1—d)+ ﬁl B Y (k+T+1-u,

(K+1—d+ CI Uk+1~9}]
At steady-state, (16) becomes

{(Bi+CHTIUB,+ C)+ BYU,=( B+ C)) "Il K(Y,—Y) (17)

+U{K-D(B:+CY+ (B +CH U,

Bilinear Model Predictive Control Methods for Chemical Processes

Rearrangement of (17) gives

(Bi+C)'I Yy Y)={B—( B+ C) K- D(B.+ C)) U,

(18)
It is clear from (18) that zero offset is achieved if
B—(B,+C)"INK-D(B;+C)=0
or
B+( B+ C) B+ C)=((B,+C)'TK(B;+ C)) (19)

If n=m (i.e., input and output vectors have the same
dimensions), K has the explict form given by

K=I+{((B,+C)'I 'B(B:+C)H™" (20)

4. Adaptive Bilinear Model Predictive Control

In many practical situations, the operating condi-
tions vary with time, and it is very difficult to obtain
any information about the parameters of the plant to
be controlled. The adaptive model predictive control
(AMPC) methods are believed to be the most promising
strategy allpicable in these situations. The AMPC
system is a combination of both feedback control and
identification.

4.1 Review on Adaptive Control(linear and bilinear)

Many adaptive controllers have been proposed in
the literature, but insufficient design methods and the
complexity of the adaptive controllers have restricted
the practical implementation of the adaptive control-
lers. Recently, the rapid development of digital comput-
er has made the adaptive controllers technically possi-
ble.

Many effort have been devoted to the extension of
existing adaptive control systems to predictive control
system. Lee and Lee[32] described the adaptive control
scheme for disturbance-free systems using a long-term
predictor. Their predictive controller allows direct
transmission case, which is unusual, but requires the
perfect knowledge of the plant structure such as time
delay and system order. Martin-Sanchez et al.[52] pro-
posed a stable AMPC system. They used an equation
error identification method and proved several stability
properties. The applications of AMPC algorithm were
summarized in Table 5.
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Table 5. Applications of AMPC algorithm.

Process Type References

Environmental Test Chamber MIMO Dion et al., 1991 53]

Semi-batch reactor SISO Defaye et al., 1993 [54]
Batch reactor SISO Jarupintusophon et al., 1994 [565]

Cluett et al., 1985 [56]
Industrial bleach plant SISO Dumont et al., 1989 [57]
Kamyr digester SISO Allison et al., 1990 [58]

pH control SISO Zhu et al., 1991, [59]

Distillation coluran MIMO Martin-Sanchez and Shah, 1987 [60]

4.2 Identification Algorithm

Since an identification algorithm is itself an
adaptation algorithm in the adaptive control system,
the analysis of the identification problem with bounded
disturbances has often been coupled with the analysis
of adaptive control systems with bounded disturbances.
Samson[61] analyzed the identification methods for the
discrete-time system subject to bounded disturbances.
Identification for bilinear systems has been studied by
Frick and Valavi[62], Kubrusly[63], Zhang|64], Wang et
al[65]. Yeo and Williams[6] have used ARMA model in
the identification of single variable bilinear systems.
For illustration, a simple identification scheme is pre-
sented here with application to bilinear systems.

A single variable bilinear system can be described
by ARMA representation of a form

(k)= pTx(k—1)+d(k) 2n

In order to identify the system parameter vector p, we
propose a recursive identification algorithm of the form

PR =p k=1 +Ek—Dxlk—1e" (k) (22)

where
e(k)=y(k) —v (Hk)
e'(h=yvlk—y'(Hk—1)
VHR) = p (B x(k—1)
Vi (Hk—1)=p" (k—Dx(k—1)

and the gain £&(&-1) is calculated as follows

2Bl e 1]
- | Rl DI o TR (93)
0 AT IES!

where

()= 1 LAl
stp = e R
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0<A(R =1
0< OB R (=
1= g< Ry (oo

In this manuscript the above identification algorithm is
used and the extension to multivariable bilinear system
is relatively straigthforward.

5. Examples

To illustrate the proposed AMPC method for
multivariable bilinear models, we investigated a simple
MIMO bilinear system. To correct for the effect of
model inaccuracy, we introduce a simple filter given by

UR) = (1-a) U (k) +a U(k—1) (24)

where U'(k) is the unfiltered input vector from the
control algorithm (16). The disturbance is assumed to
be constant as D(&)=[0.5 0.5]'. Constant matrices [ and
B are used in the simulations, i.e., y,=1(1<¢<n) and
8:=A(1<i<m). In the identification, the algorithm
given by (22) and (23) with g=1, §(k)=1and A(k)=
42_2[5(:)—1] was used. The process isgiven by (25). The
process initially has zero inputs, outputs and distur-
bances. The results of the AMPC control are shown in
Figure 6.

Y(k):[ —0.2 U] Y(k—l)+[ 0.3 0] Y(k—2)

0 0.2 0 0.4
0.5 0 _ _ —0.12 0
% 1.2] YOk Dk 4)+[ 0 0.3] (25)
y(k—Z)u,</e—5)+[ g 115] UCk—14)
2 0.5 _
+[ 1.4 0.6] U(k=5) + D(&)
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Figure 6. Results of control for example 2(53=3.0, #=0.8)

6. Concluding Remark

In the last decade, the model predictive control
methods have enjoyed many industrial applications
with successful results. Although the general predictive
control methods for nonlinear chemical processes are
not yet formulated, the promising features of the model
predictive control methods atlract attentions of many
researchers who are involved with difficult but impor-
tant nonlinear process control problems.

Recently, the class of bilinear model has been intro-
duced as an useful tool for examining many nonlinear
phenomena. Since their structural properties are similar
to those of linear models, it is not difficult to develop a
robust adaptive model predictive control method based
on bilinear model. We expect that the model predictive
control method based on bilinear model will expand its
region in the world of nonlinear systms.
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