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Abstract

A robust nonlinear predictive control strategy using a
disturbance estimator is presented. The disturbance
estimator is comprised of two parts’ one is the disturbance
model parameter adaptation and the other is future
disturbance prediction. RLSM(recurrsive least square
method) with a forgetting factor is used to determine the
uncertain disturbance model parameters and for the future
disturbance prediction, future process outputs and inputs
projected by the process model are used. The simulation
results for chemical reactors indicate that a substantial
improvement in nonlinear predictive control performance is
possible using the disturbance estimator.

Introduction

It is well recognized that a characteristic of chemical
processes that presents a challenging control problem is
the inherent nonlinearity of the process. During the past
decade, linear model predictive control techniques have
been greatly developed and well received by industry
because they are intuitive and explicitly handle constraints.
But one of the limitations to the existing linear model
predictive control strategies are that they are based on
linear systems theory and may not perform well on highly
Several nonlinear
were presented. There are two
One method
uses the linearized model of nonlinear differential equations
and its control law is same as linear model predictive
control(Li and Biegler, 1989; Brengel and Seider, 1989;
Gutta and Zafiriou). The other method is a nonlinear
programming approach that uses a nonlinear optimization
code such as GRG(Generalized Reduced Gradient) and

nonlinear
predictive
representive nonlinear predictive methods.

systems. approaches for

control
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SQP(Successive Quadratic Programming) to calculate the
control law(Bequette, 1991; Patwardhan and Edgar,1990).
All these approaches are incorporated with parameter
identification algorithm to get good control performance
and robustness. So most of nonlinear control strategies
have assumed that all state variables are measured or are
easily estimated. But if the number of state variables are
far more than that of measurements, estimation of all the
states and parameters may be difficult or meaningless.
Even when all of the state variables are measured or
estimated, the control performance may not be satisfactory
if there are model structure errors. So it is necessary to
make the nonlinear predictive control strategies robust
without  depending model
identification algorithms,

In this study, a new approach is developed to deal with
model/plant mismatch or unknown disturbances. This
approach combine the Newton-type controller(Li and
Biegler, 1989) with a disturbance estimator. We used
RLSM(Recurrsive Least Square Method) with the
forgetting factor to estimate uncertain parameters of the
disturbance model where all available process inputs and
output measurements are needed. Using the disturbance
model, future disturbances can be projected with present
process inputs and output remaining
constant in the prediction horizon and future process
inputs are calculated based on the process outputs
prediction including them. And then for the more accurate
disturbance prediction, the future disturbances are
recalculated with primarily calculated process inputs and
predicted process outputs to get better process output
predicton. This step is repeated untl the difference
between the projected and the prior projected future
disturbances becomes sufficiently small. The nonlinear
predictive control with the disturbance estimator has some
merits as follows :

on  process parameter

measurements



® It is robust for the processes with severe model
uncertainty.

@® It shows good control performance because future
process inputs are recalculated based on accurate
disturbance prediction.

@® The disturbance estimator may be independently used
from a nonlinear model parameter identification algorithm,
@® It is effective when the model structure is changed or
the number of state variables is far more than that of

measurements.

Review of Nonlinear Model Predictive Control

The nonlinear predictive control problem is typically
formulated as follows :

min &u) = IZ:(:)’dr::_i:'[y.,(i)—ym(i)]z (1)

subject to
L ) @
y = gfx) (3)
Ymin £ Y S Ymxx (4)
Umin S ¥ < Umax (5)
X10) = x0 (6)

In nonlinear programming approach, orthogonal collocation
on finite elements is used to transfer the differential
equation into a set of algebraic equations, then the above
objective function can be expressed as a function of future
process inputs and solved directly with a nonlinear
optimization code such as GRG(Generalized Reduced
Gradient) and SQP(Successive Quadratic Programming) to
calculate the control law(Bequette, 1991; Patwardhan and
Edgar,1990). In linear approximation approach, differential
equations are linearized, and arranged as a function of a
set of future process inputs, then we can apply
QP(Quadratic Programming) to the above control problem
and get a set of future process inputs. Only first process
input is applied to the process and at the next sampling
time all the calculation are repeated(Li and Biegler, 1989;
Brengel and Seider, 1989; Gatta and Zafiriou).

Disturbance Estimator

Linear model predictive control are alwayé consistent
because the difference between predicted process outputs
and measurements is interpreted as being due to additive
disturbances. Of course, in linearized mode! based nonlinear
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predictive control, the above concept can be used to
compensate the difference caused by model/plant mismatch
or unknown disturbances. However, since unknown
disturbances or model/plant mismatch can profoundly
influence the process outputs in nonlinear processes, it is

far better to get the information about how disturbances

actually influence the process and add the predicted
disturbances to process output prediction than to simply
add the difference between model outputs and
measurements.

In NLQDMC(Nonlinear Quadratic Dynamic Matrix
Control), the disturbance vector d(k) is defined that ya(k) -
k), where yo(k) is a measurement vector. It is added to
the process output prediction directly under the assumption
of d(k+i) = d(k) for i = 1, 2, ..P where P is the prediction
horizon. So such assumption may cause unexpected results
under severe model/plant mismatch in nonlinear processes.

In the multistep Newton-type Controller(Li and Biegler,
1989), A primary limitation of the technique is that a
perfect model is assumed; they suggested that an on-line
parameter estimation technique should be added to update
the model. But when the number of state variables is far
more than that of measurements or the model structure is
changed, the technique may not work well. After all, their
method totally depends on on-line model parameter
identification techniques to remove steady-state offset

when there are model/plant mismatch or unknown
disturbances.
Parrish and  Browsilow(1988) developed NLIC

(Nonlinear Inferential Control}) to estimate unmeasured
disturbances and follow a desired setpoint trajectory. Their
method does not account for state variable constraints and
can not handle systems, of which the process gains
change signs in the operating region (Bequette, 1991).

In order to resolve all those difficulties, we add a
disturbance estimator to the multistep Newton-type
controller, Of course, NLQDMC can be used instead of the
multistep Newton~-type controller because both of them are
based on linearized models. The disturbance estimator
consists of two parts , one is disturbance model parameter
adaptation using RLSM with the exponential forgetting
factor, the other is future disturbance prediction using the
disturbance model. The basic algorithm for disturbance
estimation is as follows :

@ Disturbance model parameter adaptation

A linear discrete model is used for disturbance model
parameter adaptation as follows.

d(k)=¢"0 (7



where

¢9=[a1a2...a,. blbg...b,.]

8 = [ym(K) ym(k=1) .. ymlk=-n) u(k) .. u(k-n))

Here, n is the order of process model outputs and inputs
in the disturbance model equation. How to determine n is
not clear, but the bigger n is generally the better the
performance of model adaptation is. RLSM thh the
exponential forgetting factor is good for the model
parameter adaptation of slowly time-varying processes.
Since the disturbance model is a unknown nonlinear
system, we can‘use RLSM with the exponential forgetting
factor under the assumption that the disturbance model is
time-varying. RLSM with the exponential forgetting
factor(A strom, 1989) is as follows:

ok) = ak-I) + K(kNd(K) - & o(k-1)) ®)
Ktk) = P(k)o(k) = P(k-1)HkN AL + Hk)P(k-1)#(k))’ %)
PK' = P(k-1)" + Ak)otk)” (10)
where é(k) . estimated parameter vector
Here, we suggest a linear discrete model as the
disturbance model. If a bilinear model is used, the

regression vector ¢ would be changed as [yu(k) yn(k-I) . .
Im(k-n) yu(kJu(k) ym(k-Du(k-1) . . ymlk-nju(k-n} uk) u(k-1) . .
u(k-n)]. Later, we compare the control performance between
the linear and the bilinear disturbance model.

@ Disturbance prediction

step 1 : Start with output measurements ya(k), model
outputs yk), and process inputs wu(k).

step 2 : Set d(k) = ya(k) - ¥k) and calculate the predicted
disturbances dyofi) with (i) = ya(k) and wu(i) = w(k) for i
= k+1, k+2, ... k+P,

k+P
step 3 1 Solve min #u) = 2. [yip (1) ypmali) - dpali)]?

s.t. equations (2) - (4)

Through this step, future inputs wu(i) for i = k+1, k+2, ... ,
k+P are calculated and for the convenience, let these
values wqxdi).

step 4 : Recalculate the predicted disturbances; dyeeali)
with future process inputs; w.(i), and d(k)}+yi) where ¥(i)
are the future model outputs calculated with these future
process inputs.

The reason why d(k) is added to i) is to give more
approximated process output prediction since the predicted
output by model equations only can not be exact
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step 5 : Set diffti) = dpufi) - d'wai) where superscript 1
and 2 are old and newly calculated predicted disturbances
respectively in step 4. Solve

min au) =‘_§: L (D]

St Umin S Unli) + AW(I) S Umax

step 6 : If J |l diffi) || < € where ¢ is a sufficiently
small number, then set Gnei) = uadi) + Aufi) as ultimate
process inputs and go to step 1. Otherwise, set d'wefi) =
Loudi), Uoidli) = uadi) + Au(i), and go to step 4.

Examples and Simulation
An adiabatic CSTR with an exothermic, first order

irreversible reaction is used as a SISO nonlinear process.
The resulting model equation is as follows;

—d—x—l———axe ( Xe ) + a(xy—x1)

a 1€XP! 1+ %7 qixy X

dxz X2

—_= - ———— ) - (@+8)x2 + Ox3 +

" B a xiexp( T (a+8)x X3 + QX

where x; is the dimensionless concentration, x; is the
dimensionless temperature(controlled variable), x3 is the
dimensionless  cooling jacket temperature(manipulated
variable), and the subscript 'f' means feed. The nominal
parameter values are shown in Table 1 (Limqueco and
Kantor, 1990; Bequette, 1991)

Table 1. Model parameter values and initial conditions

Model parameters &

initial conditions value
a 0.072
8 8
é 0.3
4 20.0
Xt 1.0
Xot 0.0
X3t 0.0

Under the nominal parameter values, this system has three
states, The lower- and upper-temperature steady states
are stable, while the middle temperature steady state is
unstable.

To know how robust the NTC{Newton-Type controller)
with a disturbance estimator is, we apply the technique to
the system when one of the model parameter value, & =0.3
is changed to 3.0. In the case, the steady-state operating
is greatly changed as shown in
figure 1 since there is no sign change. So we can say
that the extent of model/plant mismatch is severe. For the

curve according to &



simulation of control performance, the process is assumed
to behave the original process model equation( & =0.3)
while the model for the design of Newton-~type controller
depends on &=3.0. We assume the concentration Xx; is
measured and the process input, u is bounded between -1
and 2. Figure 2 shows the control performances of NTC,
NTC with additive disturbance, and NTC with a
disturbance estimator for a setpoint change to the
open—loop unstable point x;=0.5528, x,=2.7517. As
expected, the NTC without the model parameter
identification shows steady-state offset, and NTC with
additive disturbance oscillates periodically around the
setpoint. However, NTC with the disturbance estimator
shows good control performace without any steay-state
offset.

Figure 3 shows the results when the model parameter,
& is changed to 0.12. The NTC with a disturbance
estimator shows good control performance while the others
are oscillationg around the setpoint. The prediction horizon
in which the model output is to match the desired
trajectory is an important tuning parameter for nonlinear
predictive control techniques. Generally the
prediction horizon is, the better control performance is. But
in the case of model/plant mismatch, long prediction
horizon may result in bad control action and performance.
Figure 4 shows the comparison between NTC(P=1) and
multistep NTC(P=5) with a disturbance estimator. The
multistep NTC caused the steady-state offset, That is

because the predicted disturbance values are oscillated and
the total predicted error sum goes to zero. Therefore, the
prediction horizon should be chosen to be as short as
possible to minimize the errors introduced by projecting
the disturbance into the future in the case of model/plant
mismatch. We used the 4th order linear disturbance model
for all simulation studies. A bilinear model for the
disturbance can give the better result than the linear
model. Figure 5 shows the control performance of NTC
with a disturbance estimator using the 4th order bilinear
model. The design of NTC is based on &= 3.0 and after
30 time steps, &=0.3 in the process is changed to 0.2.
The process input is bounded between -2 and 2. NTC
using a bilinear disturbnace model shows the shorter
settling time. Even when x1 is unmeasured, there is little
change for the control performance (Figure 6). Therefore,
the disturbance model which can represent the nonlinearity
of unknown disturbance closely is required to get good
control performance and robustness.

larger

Conclusions

Nonlinear model predictive control using the disturbance
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estimator shows good control performance and robustness.
It is found that RLSM with an exponential forgetting
factor is good as a disturbance model parameter adaptation
algorithm and the better future disturbance prediction is
possible with it than with the assumption that present
differences between measurements and model outputs are
constant over all prediction horizon. The concept of
disturbance estimator can be expanded to other nonlinear
predictive control techiques without much modification.
Also, it may be used independently with process model
parameter identification techniques and is easily added to
the existing nonlinear predictive control strategies. It is
especially effective when the model stucture is changed or
the number of state variable is far more than that of

measurements.
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Figure 1. Sensitivity of the steady-state operating curve
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Figure 2. Setpoint change to unstable operatiiyg point with
model uncertainty(plant 8=0.3, model 8=3.0).

2.6

é NTC

2 NTC w/ acdiive disturiance
§ NTC w/ a dsturbance estimator
§
8

1

[+
o 10 2
Time

s
g
8
g
NTC w/ a disturbsnce estimator
“o 5 10
Time

Figure 3. Setpoint change to unstable operating point with

model uncertainty(plant §=0.3, model §=0.12).
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Figure 4. Comparison of the control performance between
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