• 제목/요약/키워드: nonlinear differential equations

검색결과 604건 처리시간 0.028초

GEGENBAUER WAVELETS OPERATIONAL MATRIX METHOD FOR FRACTIONAL DIFFERENTIAL EQUATIONS

  • UR REHMAN, MUJEEB;SAEED, UMER
    • 대한수학회지
    • /
    • 제52권5호
    • /
    • pp.1069-1096
    • /
    • 2015
  • In this article we introduce a numerical method, named Gegenbauer wavelets method, which is derived from conventional Gegenbauer polynomials, for solving fractional initial and boundary value problems. The operational matrices are derived and utilized to reduce the linear fractional differential equation to a system of algebraic equations. We perform the convergence analysis for the Gegenbauer wavelets method. We also combine Gegenbauer wavelets operational matrix method with quasilinearization technique for solving fractional nonlinear differential equation. Quasilinearization technique is used to discretize the nonlinear fractional ordinary differential equation and then the Gegenbauer wavelet method is applied to discretized fractional ordinary differential equations. In each iteration of quasilinearization technique, solution is updated by the Gegenbauer wavelet method. Numerical examples are provided to illustrate the efficiency and accuracy of the methods.

비선형 미분방정식으로 표현되는 비선형 시스템의 해석을 위한 볼테리 시리즈의 응용 (Application of Volterra Functional Series to the Analysis of Nonlinear Systems Represented by Nonlinear Differential Equations)

  • Sung, Dan-Keun
    • 대한전자공학회논문지
    • /
    • 제25권3호
    • /
    • pp.315-321
    • /
    • 1988
  • The input-output relation for nonlinear systems can e explicitly represented by the volterra functional series and it is characterized by the Volterra kernels. A block diagram reduction method is proposed to determine the Volterra kernels for nonlinear differential equations and is compared with the direct substitution techniques. The former method can significantly reduce the computational complexity. A degree of nonlinearity is defined and analyzed for the analysis of nonlinear systems.

  • PDF

NEW HOMOTOPY PERTURBATION METHOD FOR SOLVING INTEGRO-DIFFERENTIAL EQUATIONS

  • Kim, Kyoum Sun;Lim, Hyo Jin
    • Journal of applied mathematics & informatics
    • /
    • 제30권5_6호
    • /
    • pp.981-992
    • /
    • 2012
  • Integro-differential equations arise in modeling various physical and engineering problems. Several numerical and analytical methods have been developed to solving such equations. We introduce the NHPM for solving nonlinear integro-differential equations. Several examples for solving integro-differential equations are presented to illustrate the efficiency of the proposed NHPM.

Two-dimensional curved panel vibration and flutter analysis in the frequency and time domain under thermal and in-plane load

  • Moosazadeh, Hamid;Mohammadi, Mohammad M.
    • Advances in aircraft and spacecraft science
    • /
    • 제8권4호
    • /
    • pp.345-372
    • /
    • 2021
  • The analysis of nonlinear vibrations, buckling, post-buckling, flutter boundary determination and post-flutter behavior of a homogeneous curved plate assuming cylindrical bending is conducted in this article. Other assumptions include simply-supported boundary conditions, supersonic aerodynamic flow at the top of the plate, constant pressure conditions below the plate, non-viscous flow model (using first- and third-order piston theory), nonlinear structural model with large deformations, and application of mechanical and thermal loads on the curved plate. The analysis is performed with constant environmental indicators (flow density, heat, Reynolds number and Mach number). The material properties (i.e., coefficient of thermal expansion and modulus of elasticity) are temperature-dependent. The equations are derived using the principle of virtual displacement. Furthermore, based on the definitions of virtual work, the potential and kinetic energy of the final relations in the integral form, and the governing nonlinear differential equations are obtained after fractional integration. This problem is solved using two approaches. The frequency analysis and flutter are studied in the first approach by transferring the handle of ordinary differential equations to the state space, calculating the system Jacobin matrix and analyzing the eigenvalue to determine the instability conditions. The second approach discusses the nonlinear frequency analysis and nonlinear flutter using the semi-analytical solution of governing differential equations based on the weighted residual method. The partial differential equations are converted to ordinary differential equations, after which they are solved based on the Runge-Kutta fourth- and fifth-order methods. The comparison between the results of frequency and flutter analysis of curved plate is linearly and nonlinearly performed for the first time. The results show that the plate curvature has a profound impact on the instability boundary of the plate under supersonic aerodynamic loading. The flutter boundary decreases with growing thermal load and increases with growing curvature.

암-면역 시스템의 시스템 동정에 관한 연구 (On the Identification of Cancer-Immune Systems)

  • Lee, Kwon-Soon
    • 대한전기학회논문지
    • /
    • 제41권9호
    • /
    • pp.1104-1109
    • /
    • 1992
  • A mathematical model of cancerous system based on immunological surveillance has been proposed by Lee. The model involves a system of 12 coupled nonlinear differential equations due to cellular kinetics and each of them can be modeled bilinearly. This paper discusses only the properties of solutions to the nonlinear differential equations and identification.

Existence and Uniqueness Theorems for Certain Fourth-order Boundary Value Problems

  • Minghe, Pei;Chang, Sung Kag
    • Kyungpook Mathematical Journal
    • /
    • 제45권3호
    • /
    • pp.349-356
    • /
    • 2005
  • In this paper, by using the Leray-Schauder continuation theorem and Wirtinger-type inequalities, we establish the existence and uniqueness theorems for two-point boundary value problems of a certain class of fourth-order nonlinear differential equations.

  • PDF

APPROXIMATE CONTROLLABILITY FOR SEMILINEAR INTEGRO-DIFFERENTIAL CONTROL EQUATIONS WITH QUASI-HOMOGENEOUS PROPERTIES

  • Kim, Daewook;Jeong, Jin-Mun
    • 충청수학회지
    • /
    • 제34권3호
    • /
    • pp.189-207
    • /
    • 2021
  • In this paper, we consider the approximate controllability for a class of semilinear integro-differential functional control equations in which nonlinear terms of given equations satisfy quasi-homogeneous properties. The main method used is to make use of the surjective theorems that is similar to Fredholm alternative in the nonlinear case under restrictive assumptions. The sufficient conditions for the approximate controllability is obtain which is different from previous results on the system operator, controller and nonlinear terms. Finally, a simple example to which our main result can be applied is given.