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Abstract. In this paper, by using the Leray-Schauder continuation theorem and

Wirtinger-type inequalities, we establish the existence and uniqueness theorems for two-

point boundary value problems of a certain class of fourth-order nonlinear differential

equations.

1. Introduction

Fourth-order two-point boundary value problems are essential in describing a
vast class of elastic deflections, and attract close attention extensively, see the ref-
erences.

In this paper, we consider the existence and uniqueness of solutions for general
fourth-order nonlinear boundary value problems

(1.1) y(4) = f(x, y, y′, y′′, y′′′), 0 < x < 1,

with the boundary conditions

(1.2) y(0) = y(1) = y′′(0) = y′′(1) = 0,

where f : [0, 1]× R4 → R satisfies the Carathéodory’s conditions, that is

(i) for each (y, z, u, v) ∈ R4, the function x ∈ [0, 1] → f(x, y, z, u, v) ∈ R is
measurable on [0, 1];

(ii) for a.e. x ∈ [0, 1], the function (y, z, u, v) ∈ R4 → f(x, y, z, u, v) ∈ R is
continuous on R4;

(iii) for each r > 0, there exists αr(x) ∈ L1[0, 1], such that |f(x, y, z, u, v)| ≤ αr(x)
for a.e. x ∈ [0, 1] and all (y, z, u, v) ∈ R4, with

√
y2 + z2 + u2 + v2 ≤ r.
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In section 2, we apply the Leray-Schauder continuation theorem and Wirtinger-
type inequalities to obtain the existence and uniqueness of solutions for nonlinear
two point boundary value problems of equation (1.1) with boundary conditions
(1.2). Our results improve and generalize the corresponding results in [1], [2], [4]
and [8].

Throughout this paper, we shall use the Sobolev-space W 4,1(0, 1) defined by

W 4,1(0, 1) = {y ∈ C3[0, 1] : y′′′ is absolutely continuous},

with norm

||y||W 4,1 =
4∑

j=0

∫ 1

0

|y(j)(t)|dt.

2. Main results

The following Wirtinger-type inequalities are crucial in the proof of the main
theorems.

Lemma 2.1 ([6]). Let y(x) ∈ C3[0, 1] and y(0) = y(1) = y′′(0) = y′′(1) = 0. Then

||y(i)||2 ≤ 1
π
||y(i+1)||2, i = 0, 1, 2.

Now we are in a position to state our main results.

Theorem 2.1. Let f : [0, 1] × R4 → R satisfy the Carathéodory’s conditions.
Assume that

(i) there exist positive numbers a0, b0, c0, d0 and a function e(x) ∈ L1[0, 1] such
that

f(x, y, z, u, v)u ≥ −a0|yu| − b0|zu| − c0u
2 − d0|vu|+ e(x)|u|,

for a.e. x ∈ [0, 1] and all y, z, u, v ∈ R;

(ii) there exist a continuous function β(x, y, z, u) : [0, 1]×R3 → R, a Carathéodory’s
function γ(x, y, z, u) : [0, 1]× R3 → R and a number σ ∈ [0, 2] such that

|f(x, y, z, u, v)| ≤ β(x, y, z, u)|v|σ + γ(x, y, z, u),

for a.e. x ∈ [0, 1] and all y, z, u, v ∈ R.

Then BVP(1.1)(1.2) has at least one solution provided
a0

π4
+

b0

π3
+

c0

π2
+

d0

π
< 1.

Proof. We define a linear mapping L : D(L) ⊂ C3[0, 1] → L1[0, 1] by setting

D(L) = {y ∈ W 4,1(0, 1) : y(0) = y(1) = y′′(0) = y′′(1) = 0}
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and for y ∈ D(L),
Ly = y(4).

We also define a nonlinear mapping N : C3[0, 1] → L1[0, 1] by setting

(Ny)(x) = f(x, y(x), y′(x), y′′(x), y′′′(x)).

We note that N is a bounded, continuous mapping by the Lebesgue’s Dominated
Convergence Theorem. It is easy to see that the linear mapping L : D(L) ⊂
C3[0, 1] → L1[0, 1], defined above, is a one-to-one mapping. Also let K : L1[0, 1] →
C3[0, 1] be the linear integral mapping defined by for y ∈ L1[0, 1]

(Ky)(x) =
∫ 1

0

G(x, t)y(t)dt,

where

G(x, t) =




−1

6
x(1− t)(x2 − 2t + t2) +

1
6
(x− t)3, 0 ≤ t ≤ x ≤ 1;

−1
6
x(1− t)(x2 − 2t + t2), 0 ≤ x ≤ t ≤ 1,

is a Green’s function for y(4) = 0, y(0) = y(1) = y′′(0) = y′′(1) = 0. Then we
see that for y ∈ L1[0, 1], Ky ∈ D(L) and LKy = y, and for y ∈ D(L), KLy =
y. Furthermore, it follows easily by using the Arzela-Ascoli Theorem that KN :
C3[0, 1] → C3[0, 1] is a compact operator.

We next note that y ∈ C3[0, 1] is a solution of the BVP(1.1)(1.2) if and only if
y is a solution of the operator equation

Ly = Ny,

which is equivalent to the operator equation

y = KNy.

We now apply the Leray-Schauder continuation theorem to the operator equa-
tion y = KNy for the existence of solutions.

To do this, it is sufficient to show that the set of all possible solutions of the
family of equations

(2.1) y(4) = λf(x, y, y′, y′′, y′′′), 0 < x < 1,

(2.2) y(0) = y(1) = y′′(0) = y′′(1) = 0,

is, a priori, bounded in C3[0, 1] independent of λ ∈ [0, 1].
Let y(x) be a possible solution of BVP(2.1)(2.2) for some λ ∈ [0, 1]. Then by

lemma 2.1 we have

||y(i)||2 ≤ 1
π
||y(i+1)||2, i = 0, 1, 2 and ||y′′||∞ ≤ ||y′′′||2.
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Multiplying the equation (2.1) by y′′ and integrating it on [0, 1], we have

0 =
∫ 1

0

y(4)y′′dx− λ

∫ 1

0

f(x, y, y′, y′′, y′′′)y′′dx

≤ −
∫ 1

0

(y′′′)2dx + λ

∫ 1

0

[
a0|yy′′|+ b0|y′y′′|+ c0(y′′)2 + d0|y′′′y′′|+ e(x)|y′′|] dx

≤ −||y′′′||22 + a0||y||2||y′′||2 + b0||y′||2||y′′||2 + c0||y′′||22 + d0||y′′′||2||y′′||2 + ||e||1||y′′||∞
≤ −||y′′′||22 +

(
a0

π4
+

b0

π3
+

c0

π2
+

d0

π

)
||y′′′||22 + ||e||1||y′′′||2

=
[(

a0

π4
+

b0

π3
+

c0

π2
+

d0

π

)
− 1

]
||y′′′||22 + ||e||1||y′′′||2.

Since
a0

π4
+

b0

π3
+

c0

π2
+

d0

π
< 1, there exists a constant ρ0 independent of λ ∈ [0, 1]

such that

(2.3) ||y′′′||2 ≤ ρ0,

and

(2.4) ||y||2 ≤ ρ0, ||y′||2 ≤ ρ0, ||y′′||2 ≤ ρ0.

Further since y(0) = y(1) = y′′(0) = y′′(1) = 0, there exists ξ ∈ [0, 1] with y′(ξ) = 0,
y(x) =

∫ x

0
y′(t)dt, y′(x) =

∫ x

ξ
y′′(t)dt and y′′(x) =

∫ x

0
y′′′(t)dt for x ∈ [0, 1]. It

follows that

(2.5) ||y′′||∞ ≤ ρ0, ||y′||∞ ≤ ρ0 and ||y||∞ ≤ ρ0.

Noticing from Holder’s inequalities that
∫ 1

0
|y′′′(x)|σdx ≤ ||y′′′||σ2 , it follows from

condition (ii) and equation (2.1) together with (2.5) that there is a constant ρ1

independent of λ ∈ [0, 1] such that

||y(4)||1 ≤ ρ1.

Since y′′(0) = y′′(1) = 0, there exists an η ∈ [0, 1] such that y′′′(η) = 0 furthermore
y′′′(x) =

∫ x

η
y(4)(t)dt. Hence

(2.6) ||y′′′||∞ ≤ ||y(4)||1 ≤ ρ1.

It is now clear from (2.5) and (2.6) that there is a constant C, independent of
λ ∈ [0, 1], such that

||y||C3[0,1] =
3∑

i=0

||y(i)||∞ ≤ C.

Hence by Leray-Schauder’s theorem, KN has a fixed point. This completes the
proof of the theorem. ¤
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We get the following corollaries directly from theorem 2.1.

Corollary 2.1. Let f : [0, 1] × R4 → R satisfy the Carathéodory’s conditions.
Assume that for a.e. x ∈ [0, 1], f(x, y, z, u, v) is continuously differentiable with
respect to y, z, u and v. Suppose that there exist nonnegative real numbers a0, b0, c0

and d0 with
a0

π4
+

b0

π3
+

c0

π2
+

d0

π
< 1 such that

∂f

∂y
(x, y, z, u, v) ≥ −a0,

∂f

∂z
(x, 0, z, u, v) ≥ −b0,

∂f

∂u
(x, 0, 0, u, v) ≥ −c0,

∂f

∂v
(x, 0, 0, 0, v) ≥ −d0,

for a.e. x ∈ [0, 1] and all y, z, u, v ∈ R. Suppose further that there exist a continuous
function β(x, y, z, u) : [0, 1] × R3 → R, a Carathéodory’s function γ(x, y, z, u) :
[0, 1]× R3 → R and a number σ ∈ [0, 2] such that

|f(x, y, z, u, v)| ≤ β(x, y, z, u)|v|σ + γ(x, y, z, u),

for a.e. x ∈ [0, 1] and all y, z, u, v ∈ R. Then BVP(1.1)(1.2) has at least one
solution.

Corollary 2.2. Let f(x, y, z, u, v) be continuous on [0, 1] × R4, and there exist

nonnegative real numbers a0, b0, c0, d0 and e0 with
a0

π4
+

b0

π3
+

c0

π2
+

d0

π
< 1 such that

|f(x, y, z, u, v)| ≤ a0|y|+ b0|z|+ c0|u|+ d0|v|+ e0,

for all (x, y, z, u, v) ∈ [0, 1]× R4. Then BVP(1.1)(1.2) has at least one solution.

Remark 1. It is easy to see that corollary 2.2 is a generalization of theorem 1 in
[8].

In condition (ii) of theorem 2.1, the continuity of β can be weaker when σ ∈ [0, 1]
as follows.

Theorem 2.2. Let f : [0, 1] × R4 → R satisfy the Carathéodory’s conditions.
Assume that

(i) there exist positive numbers a0, b0, c0, d0 and a function e(x) ∈ L1[0, 1] such
that

f(x, y, z, u, v)u ≥ −a0|yu| − b0|zu| − c0u
2 − d0|vu|+ e(x)|u|,

for a.e. x ∈ [0, 1] and all y, z, u, v ∈ R;

(ii) there exist a L2 - Carathéodory’s function β(x, y, z, u) : [0, 1] × R3 → R , a
Carathéodory’s function γ(x, y, z, u) : [0, 1]×R3 → R and a number σ ∈ [0, 1]
such that

|f(x, y, z, u, v)| ≤ β(x, y, z, u)|v|σ + γ(x, y, z, u),

for a.e. x ∈ [0, 1] and all y, z, u, v ∈ R.
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Then BVP(1.1)(1.2) has at least one solution provided
a0

π4
+

b0

π3
+

c0

π2
+

d0

π
< 1.

The proof of theorem 2.2 is similar to that of theorem 2.1 and thus omitted.

Remark 2. It is easy to see that theorem 2.2 improves theorem 1 in [4] and theorem
1 in [2].

Theorem 2.3. Let f : [0, 1]× R4 → R satisfy Carathéodory’s conditions. Assume
that

(i) there exist positive numbers a0, b0, c0, d0 such that

[f(x, y1, z1, u1, v1)− f(x, y2, z2, u2, v2)] (u1 − u2)
≥ −a0|y1 − y2||u1 − u2| − b0|z1 − z2||u1 − u2|

− c0(u1 − u2)2 − d0|v1 − v2||u1 − u2|,
for a.e. x ∈ [0, 1] and all yi, zi, ui, vi ∈ R, i = 1, 2;

(ii) there exist a continuous function β(x, y, z, u) : [0, 1]×R3 → R, a Carathéodory’s
function γ(x, y, z, u) : [0, 1]× R3 → R and a number σ ∈ [0, 2] such that

|f(x, y, z, u, v)| ≤ β(x, y, z, u)|v|σ + γ(x, y, z, u),

for a.e. x ∈ [0, 1] and all y, z, u, v ∈ R.

Then BVP(1.1)(1.2) has exactly one solution provided
a0

π4
+

b0

π3
+

c0

π2
+

d0

π
< 1.

Proof. Note that condition (i) gives

f(x, y, z, u, v)u ≥ a(x)|yu|+ b(x)|zu|+ c(x)u2 + d(x)|vu| − |f(x, 0, 0, 0, 0)||u|,
for all y, z, u, v ∈ R and a.e. x ∈ [0, 1]. The existence of a solution for BVP(1.1)(1.2)
follows from theorem 2.1 in view of our assumptions.

Now, to prove the uniqueness, suppose y1(x), y2(x) are two solutions of
BVP(1.1)(1.2). Setting w(x) = y1(x)− y2(x), we get

(2.7) w(4)(x) = f(x, y1(x), y′1(x), y′′1 (x), y′′′1 (x))− f(x, y2(x), y′2(x), y′′2 (x), y′′′2 (x)),

(2.8) w(0) = w(1) = w′′(0) = w′′(1) = 0.

Multiplying the equation (2.7) by w′′(x) and integrating it on [0, 1], we have

0 =
∫ 1

0

w(4)w′′dx−
∫ 1

0

[f(x, y1, y
′
1, y

′′
1 , y′′′1 )− f(x, y2, y

′
2, y

′′
2 , y′′′2 )] w′′dx

≤ −||w′′′||22 + a0||w||2||w′′||2 + b0||w′||2||w′′||2 + c0||w′′||22 + d0||w′′′||2||w′′||2
≤

[(
a0

π4
+

b0

π3
+

c0

π2
+

d0

π

)
− 1

]
||w′′′||22.



Existence and Uniqueness Theorems 355

Hence ||w′′′||2 = 0, in view of
a0

π4
+

b0

π3
+

c0

π2
+

d0

π
< 1. From the estimates

||w||∞ ≤ ||w′||2 ≤ 1
π2
||w′′′||2 and the continuity of w(x), w(x) ≡ 0 on [0, 1]. This

completes the proof of the theorem. ¤

Corollary 2.3. Let f(x, y, z, u, v) be continuous on [0, 1] × R4 and continuously
differentiable with respect to y, z, u and v. Also suppose that there exist nonnegative

real numbers a0, b0, c0 and d0 with
a0

π4
+

b0

π3
+

c0

π2
+

d0

π
< 1 such that

∂f

∂y
(x, y, z, u, v) ≥ −a0,

∂f

∂z
(x, y, z, u, v) ≥ −b0,

∂f

∂u
(x, y, z, u, v) ≥ −c0,

∂f

∂v
(x, y, z, u, v) ≥ −d0,

for all (x, y, z, u, v) ∈ [0, 1]× R4. Then BVP(1.1)(1.2) has exactly one solution.

Remark 3. Corollary 2.3 improves and generalizes theorem 4.1 in [1]. It is also
easily seen that the condition (i) of theorem 4.1 in [1] is redundant and a condition
r + mπ2 < π4 should be given for the uniqueness.

Corollary 2.4. Let f(x, y, z, u, v) be continuous on [0, 1] × R4, and there exist

nonnegative real numbers a0, b0, c0 and d0 with
a0

π4
+

b0

π3
+

c0

π2
+

d0

π
< 1 such that

|f(x, y1, z1, u1, v1)−f(x, y2, z2, u2, v2)| ≤ a0|y1−y2|+b0|z1−z2|+c0|u1−u2|+d0|v1−v2|,

for all (x, yi, zi, ui, vi) ∈ [0, 1] × R4, i = 1, 2. Then BVP(1.1)(1.2) has exactly one
solution.

Theorem 2.4. Let f : [0, 1]× R4 → R satisfy Carathéodory’s conditions. Assume
that

(i) there exist positive numbers a0, b0, c0, d0 such that

[f(x, y1, z1, u1, v1)− f(x, y2, z2, u2, v2)] (u1 − u2)
≥ −a0|y1 − y2||u1 − u2| − b0|z1 − z2||u1 − u2|

− c0(u1 − u2)2 − d0|v1 − v2||u1 − u2|,

for a.e. x ∈ [0, 1] and all yi, zi, ui, vi ∈ R, i = 1, 2;

(ii) there exist a Carathéodory function β(x, y, z, u) : [0, 1] × R3 → R, a
Carathéodory’s function γ(x, y, z, u) : [0, 1]×R3 → R and a number σ ∈ [0, 1]
such that

|f(x, y, z, u, v)| ≤ β(x, y, z, u)|v|σ + γ(x, y, z, u),

for a.e. x ∈ [0, 1] and all y, z, u, v ∈ R.
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Then BVP(1.1)(1.2) has exactly one solution provided
a0

π4
+

b0

π3
+

c0

π2
+

d0

π
< 1.

The proof of theorem 2.4 is similar to that of theorem 2.3 and thus omitted.

Remark 4. It is easy to see that theorem 2.4 improves theorem 5 in [4] and theo-
rem 2 in [2].
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