• 제목/요약/키워드: nonlinear compensator

검색결과 181건 처리시간 0.023초

직접 방사형 스피커의 비선형 고조파 왜곡 보상 제어기의 설계 (Controller design for compensation of nonlinear harmonic distortion in direct-radiator loudspeakers)

  • 김윤선;박영진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.399-402
    • /
    • 1996
  • The electrodynamic loudspeakers should have a wide dynamic range to reproduce various sound levels. When the input signal is small, the radiated sound from the loudspeaker is not so much distorted. However, for large input signal with low frequency component the radiated sound is significantly distorted due to the nonlinearities of the loudspeaker. The suspension, damping, and magnetic flux of loudspeaker are the main sources of the nonlinearity. Such electromechanical parameters related to harmonic distortion have been represented by a polynomial model for diaphragm displacement, while each of the polynomial coefficient is evaluated by using the principle of harmonic balance experimentally. Based on the polynomial model, we designed a compensator for nonlinear harmonic distortion of direct radiator loudspeaker. Than observer is used to estimate the displacement of the loudspeaker diaphragm, which is rather difficult to measure directly in the conventional setting. The usefulness of the designed compensator is demonstrated by numerical simulations. Simulation results show about 30db decrease at the second and third higher harmonic distortions. We carry out an experiment on speaker to verify designed controller and nonlinear observer.

  • PDF

사역대가 포함된 유압 위치 시스템의 LQG/LTR 제어 (LQG/LTR Control of Hydraulic Positioning System with Dead-zone)

  • 김인수;김영식;김기범
    • 한국소음진동공학회논문집
    • /
    • 제22권8호
    • /
    • pp.729-735
    • /
    • 2012
  • A LQG/LTR(linear quadratic Gaussian/loop transfer recovery) controller with an integrator is designed to control the electro-hydraulic positioning system. Without considering the nonlinearity in the dead-zone, computer simulations are performed and show good performances and tracking abilities with the feedback controller based on the linear system model. However, the performance of the closed loop hydraulic positioning system shows big steady-state error in real system because of the dead-zone. In this paper, the feedback controller with a nonlinear compensator is introduced to overcome the dead-zone phenomenon in hydraulic systems. The inverse dead-zone as a nonlinear compensator is used to cancel out the dead-zone phenomenon. Experimental tests are performed to verify the performance of the controller.

Nonlinear Friction Compensator Design for Mechatronics Servo Systems Using Neural Network

  • Chung, Dae-won;Nobuhiro Kyra;Hiromu Gotanda
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제3권2호
    • /
    • pp.111-116
    • /
    • 2001
  • A neural network compensator for stick-slip friction phenomena in meashartonics servo systems is practically proposed to supplement the traditionally available position and velocity control loops for precise motion control. The neural network compensa-tor plays the role of canceling the effect of nonlinear slipping friction force. It works robustly and effectively in a real control system. This enables the mechatronics servo systems to provide more precise control in the digital computer. It was confirmed that the con-trol accuracy is improved near zero velocity and points of changing the moving direction through numerical simulation. However, asymptotic property on the steady state error of the normal operation points is guaranteed by the integral term of traditional velocity loop controller.

  • PDF

사역대가 포함된 유압 위치 시스템의 LQG/LTR 제어 (LQG/LTR Control of Hydraulic Positioning System with Dead-zone)

  • 김기범;김영식;김인수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2012년도 춘계학술대회 논문집
    • /
    • pp.614-619
    • /
    • 2012
  • A LQG/LTR(Linear Quadratic Gaussian/Loop Transfer Recovery) controller with an integrator is designed to control the electro-hydraulic positioning system. Without considering the nonlinearity in the dead-zone, computer simulations are performed and show good performances and tracking abilities with the feedback controller based on the linear system model. However, the performance of the closed loop hydraulic positioning system shows big steady-state error in real system because of the dead-zone. In this paper, the feedback controller with a nonlinear compensator is introduced to overcome the dead-zone phenomenon in hydraulic systems. The inverse dead-zone as a nonlinear compensator is used to cancel out the dead-zone phenomenon. Experimental tests are performed to verify the performance of the controller.

  • PDF

비선헝 마찰 보상기를 이용한 램프추종 서보제어기에 관한 연구 (A study on the ramp tracking servo controller using nonlinear friction compensator)

  • 최승환;임동진
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 추계학술대회 논문집 학회본부 B
    • /
    • pp.426-428
    • /
    • 1998
  • In this paper, a ramp tracking controller design method is proposed for the systems with nonlinear frictions. The objective is to design a controller which is capable of tracking a ramp reference input without steady state error. The controller is composed of a linear controller, integrators for error compensation, and a friction compensator. The compensator estimates the parameters of friction model. The friction parameters are estimated using two different method. Simulation and experimental results show that the proposed method is effective.

  • PDF

An Enhanced Harmonic Voltage Compensator for General Loads in Stand-alone Distributed Generation Systems

  • Trinh, Quoc-Nam;Lee, Hong-Hee;Chun, Tae-Won
    • Journal of Power Electronics
    • /
    • 제13권6호
    • /
    • pp.1070-1079
    • /
    • 2013
  • This paper develops an enhanced harmonic voltage compensator which is implemented with the aid of two repetitive controllers (RCs) in order to improve the output voltage performance of stand-alone distributed generation (DG) systems. The proposed harmonic voltage compensator is able to maintain the DG output voltage sinusoidal regardless of the use of nonlinear and/or unbalanced loads in the load side. In addition, it can offer good steady-state performance under various types of loads and a very fast dynamic response under load variations to overcome the slow dynamic response issue of the traditional RC. The feasibility of the proposed control strategy is verified through simulations and experiments.

복소쌍입력 기술함수를 갖는 비선형 보상기를 이용한 유연한 빔의 진동제어 (A Vibration Control of a Flexible Beam using a Nonlinear Compensator with Complex Dual-Input Describing Function)

  • 권세현
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제23권2호
    • /
    • pp.227-235
    • /
    • 1999
  • In this paper a vibration control fo a one-link flexible beam is considered. At first a state-space model for a flexible beam is derived by using the assumed-modes approach. Based on this model the transfer function between the applied torque and the tip deflection fo the beam is presented because it is convenient to apply our method. In general there exist some control difference due to flexibility of the beam so we adop a forward-passive controller to reduce these phenomena. And a complex dual-input describing function compensator is used to control the tip deflection. The stabiltiy and the performance of the closed-loop system are analyzed. Finally the validity of the derived model and the effectiveness of proposed controller are confirmed throuth simula-tions and experiments.

  • PDF

Phase Compensation of Fuzzy Control Systems and Realization of Neuro-fuzzy Compenastors

  • Tanaka, Kazuo;Sano, Manabu
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1993년도 Fifth International Fuzzy Systems Association World Congress 93
    • /
    • pp.845-848
    • /
    • 1993
  • This paper proposes a design method of fuzzy phase-lead compensator and its self-learning by neural network. The main feature of the fuzzy phase-lead compensator is to have parameters for effectively compensating phase characteristics of control systems. An important theorem which is related to phase-lead compensation is derived by introducing concept of frequency characteristics. We propose a design procedure of fuzzy phase-lead compensators for linear controlled objects. Furthermore, we realize a neuro-fuzzy compensator for unknown or nonlinear controlled objects by using Widrow-Hoff learning rule.

  • PDF

보일러 터빈 시스템의 견실성에 관한연구 (A study on the robust control of the boiler-turbine)

  • 이시곤;김은기;권욱현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1988년도 한국자동제어학술회의논문집(국내학술편); 한국전력공사연수원, 서울; 21-22 Oct. 1988
    • /
    • pp.192-196
    • /
    • 1988
  • This paper presents a feasibility study related to the design of a linear multivariable compensator for a model of boiler-turbine system. The nonlinear dynamics are linearized at a operating condition. At the operating point an LQG/LTR compensator is designed. Simulations are included to illustrate the usefulness of this linear multivariable control law.

  • PDF

서보보상기를 사용한 견실 출력귀환제어 (Robust Output Feedback Control Using a Servocompensator)

  • 이호진;이금원
    • 융합신호처리학회논문지
    • /
    • 제8권3호
    • /
    • pp.217-221
    • /
    • 2007
  • 본 논문에서는 비선형시스템의 제어대상의 하나로 사용되고 있는 Chua회로를 대상으로 견실 출력귀환제어를 실현한다. 특히 비선형인 경우는 선형의 경우와 틀린 접근방법을 사용하여야 한다. 우선 기준신호발생기인 exosystem을 정의하고 출력추종오차식으로부터 오차방정식을 유도하고, 적분기 형태의 서보보상기를 사용하여 수정된 슬라이딩면을 설계한다. 수정된 슬라이딩면과 서보보상기에 사용되는 파라미터들은 슬라이딩면 및 서보보상기가 안정하도록 관련다항식이 Hurwitz조건을 만족하도록 정한다. 특히 모든 파라미터들이 미지여서, 오차신호들이 귀환으로부터 얻을 수 없기 때문에, 고이득 관측기를 설계하고, 이 추정값을 사용하여 안정화제어기를 얻는다. 시뮬레이션결과를 제시함으로서 알고리즘이 유용함을 증명한다.

  • PDF