• Title/Summary/Keyword: nonlinear Galerkin method

Search Result 155, Processing Time 0.026 seconds

A NONLINEAR GALERKIN METHOD FOR THE BURGERS EQUATION

  • Kang, Sung-Kwon;Kwon, Yong-Hoon
    • Communications of the Korean Mathematical Society
    • /
    • v.12 no.2
    • /
    • pp.467-478
    • /
    • 1997
  • A nonlinear Galerkin method for the Burgers equation is considered. Due to the lack of the divergence free condition, the nonlinear term is treated differently compared to that of the Navier-Stokes equations. Strong convergence results are proved for the nonlinear Galerkin method.

  • PDF

PETROV-GALERKIN METHOD FOR NONLINEAR SYSTEM

  • Wang, Yuan-ming;Guo, Ben-yu
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.2 no.1
    • /
    • pp.61-71
    • /
    • 1998
  • Petrov-Galerkin method is investigated for solving nonlinear systems without monotonicity. A monotone iteration is provided for solving the resulting problem. The numerical results show the advantages of such method.

  • PDF

A PRIORI $L^2$-ERROR ESTIMATES OF THE CRANK-NICOLSON DISCONTINUOUS GALERKIN APPROXIMATIONS FOR NONLINEAR PARABOLIC EQUATIONS

  • Ahn, Min-Jung;Lee, Min-A
    • East Asian mathematical journal
    • /
    • v.26 no.5
    • /
    • pp.615-626
    • /
    • 2010
  • In this paper, we analyze discontinuous Galerkin methods with penalty terms, namly symmetric interior penalty Galerkin methods, to solve nonlinear parabolic equations. We construct finite element spaces on which we develop fully discrete approximations using extrapolated Crank-Nicolson method. We adopt an appropriate elliptic-type projection, which leads to optimal ${\ell}^{\infty}$ ($L^2$) error estimates of discontinuous Galerkin approximations in both spatial direction and temporal direction.

ERROR ESTIMATES FOR FULLY DISCRETE DISCONTINUOUS GALERKIN METHOD FOR NONLINEAR PARABOLIC EQUATIONS

  • Ohm, Mi-Ray;Lee, Hyun-Yong;Shin, Jun-Yong
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.3_4
    • /
    • pp.953-966
    • /
    • 2010
  • In this paper, we develop discontinuous Galerkin methods with penalty terms, namaly symmetric interior penalty Galerkin methods to solve nonlinear parabolic equations. By introducing an appropriate projection of u onto finite element spaces, we prove the optimal convergence of the fully discrete discontinuous Galerkin approximations in ${\ell}^2(L^2)$ normed space.

L2-ERROR ANALYSIS OF FULLY DISCRETE DISCONTINUOUS GALERKIN APPROXIMATIONS FOR NONLINEAR SOBOLEV EQUATIONS

  • Ohm, Mi-Ray;Lee, Hyun-Young
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.5
    • /
    • pp.897-915
    • /
    • 2011
  • In this paper, we develop a symmetric Galerkin method with interior penalty terms to construct fully discrete approximations of the solution for nonlinear Sobolev equations. To analyze the convergence of discontinuous Galerkin approximations, we introduce an appropriate projection and derive the optimal $L^2$ error estimates.

Nonlinear Dynamic Analysis using Petrov-Galerkin Natural Element Method (페트로프-갤러킨 자연요소법을 이용한 비선형 동해석)

  • Lee, Hong-Woo;Cho, Jin-Rae
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.474-479
    • /
    • 2004
  • According to our previous study, it is confirmed that the Petrov-Galerkin natural element method (PGNEM) completely resolves the numerical integration inaccuracy in the conventional Bubnov-Galerkin natural element method (BG-NEM). This paper is an extension of PG-NEM to two-dimensional nonlinear dynamic problem. For the analysis, a constant average acceleration method and a linearized total Lagrangian formulation is introduced with the PG-NEM. At every time step, the grid points are updated and the shape functions are reproduced from the relocated nodal distribution. This process enables the PG-NEM to provide more accurate and robust approximations. The representative numerical experiments performed by the test Fortran program, and the numerical results confirmed that the PG-NEM effectively and accurately approximates the nonlinear dynamic problem.

  • PDF

[ $H_{\infty}$ ] Control for a Class of Singularly Perturbed Nonlinear Systems via Successive Galerkin Approximation

  • Kim, Young-Joong;Lim, Myo-Taeg
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.5
    • /
    • pp.501-507
    • /
    • 2007
  • This paper presents a new algorithm for the closed-loop $H_{\infty}$ control of a class of singularly perturbed nonlinear systems with an exogenous disturbance, using the successive Galerkin approximation (SGA). The singularly perturbed nonlinear system is decomposed into two subsystems of a slow-time scale and a fast-time scale in the spirit of the general theory of singular perturbation. Two $H_{\infty}$ control laws are obtained to each subsystem by using the SGA method. The composite control law that consists of two $H_{\infty}$ control laws of each subsystem is designed. One of the purposes of this paper is to design the closed-loop $H_{\infty}$ composite control law for the singularly perturbed nonlinear systems via the SGA method. The other is to reduce the computational complexity when the SGA method is applied to the high order systems.

HYBRIDIZABLE DISCONTINUOUS GALERKIN METHOD FOR ELLIPTIC EQUATIONS WITH NONLINEAR COEFFICIENTS

  • MINAM, MOON
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.26 no.4
    • /
    • pp.244-262
    • /
    • 2022
  • In this paper, we analyze the hybridizable discontinuous Galerkin (HDG) method for second-order elliptic equations with nonlinear coefficients, which are used in many fields. We present the HDG method that uses a mixed formulation based on numerical trace and flux. Under assumptions on the nonlinear coefficient and H2-regularity for a dual problem, we prove that the discrete systems are well-posed and the numerical solutions have the optimal order of convergence as a mesh parameter. Also, we provide a matrix formulation that can be calculated using an iterative technique for numerical experiments. Finally, we present representative numerical examples in 2D to verify the validity of the proof of Theorem 3.10.

Nonlinear aerostatic analysis of long-span suspension bridge by Element free Galerkin method

  • Zamiria, Golriz;Sabbagh-Yazdi, Saeed-Reza
    • Wind and Structures
    • /
    • v.31 no.1
    • /
    • pp.75-84
    • /
    • 2020
  • The aerostatic stability analysis of a long-span suspension bridge by the Element-free Galerkin (EFG) method is presented in this paper. Nonlinear effects due to wind structure interactions should be taken into account in determining the aerostatic behavior of long-span suspension bridges. The EFG method is applied to investigate torsional divergence of suspension bridges, based on both the three components of wind loads and nonlinearities of structural geometric. Since EFG methods, which are based on moving least-square (MLS) interpolation, require only nodal data, the description of the geometry of bridge structure and boundaries consist of defining a set of nodes. A numerical example involving the three-dimensional EFG model of a suspension bridge with a span length of 888m is presented to illustrate the performance and potential of this method. The results indicate that presented method can effectively be applied for modeling suspension bridge structure and the computed results obtained using present modeling strategy for nonlinear suspension bridge structure under wind flow are encouragingly acceptable.

HIGHER ORDER DISCONTINUOUS GALERKIN FINITE ELEMENT METHODS FOR NONLINEAR PARABOLIC PROBLEMS

  • Ohm, Mi Ray;Lee, Hyun Young;Shin, Jun Yong
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.18 no.4
    • /
    • pp.337-350
    • /
    • 2014
  • In this paper, we consider discontinuous Galerkin finite element methods with interior penalty term to approximate the solution of nonlinear parabolic problems with mixed boundary conditions. We construct the finite element spaces of the piecewise polynomials on which we define fully discrete discontinuous Galerkin approximations using the Crank-Nicolson method. To analyze the error estimates, we construct an appropriate projection which allows us to obtain the optimal order of a priori ${\ell}^{\infty}(L^2)$ error estimates of discontinuous Galerkin approximations in both spatial and temporal directions.